Previous |  Up |  Next

Article

Title: Guaranteed two-sided bounds on all eigenvalues of preconditioned diffusion and elasticity problems solved by the finite element method (English)
Author: Ladecký, Martin
Author: Pultarová, Ivana
Author: Zeman, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 1
Year: 2021
Pages: 21-42
Summary lang: English
.
Category: math
.
Summary: A method of characterizing all eigenvalues of a preconditioned discretized scalar diffusion operator with Dirichlet boundary conditions has been recently introduced in Gergelits, Mardal, Nielsen, and Strakoš (2019). Motivated by this paper, we offer a slightly different approach that extends the previous results in some directions. Namely, we provide bounds on all increasingly ordered eigenvalues of a general diffusion or elasticity operator with tensor data, discretized with the conforming finite element method, and preconditioned by the inverse of a matrix of the same operator with different data. Our results hold for mixed Dirichlet and Robin or periodic boundary conditions applied to the original and preconditioning problems. The bounds are two-sided, guaranteed, easily accessible, and depend solely on the material data. (English)
Keyword: bound on eigenvalues
Keyword: preconditioning
Keyword: elliptic differential equation
MSC: 65F08
MSC: 65N30
idZBL: 07332687
idMR: MR4218600
DOI: 10.21136/AM.2020.0217-19
.
Date available: 2021-01-28T09:57:52Z
Last updated: 2023-03-06
Stable URL: http://hdl.handle.net/10338.dmlcz/148508
.
Reference: [1] Blaheta, R.: Displacement decomposition - incomplete factorization preconditioning techniques for linear elasticity problems.Numer. Linear Algebra Appl. 1 (1994), 107-128. Zbl 0837.65021, MR 1277796, 10.1002/nla.1680010203
Reference: [2] Ciarlet, P. G.: Mathematical Elasticity. Volume I: Three-Dimensional Elasticity.Studies in Mathematics and Its Applications 20. North-Holland, Amsterdam (1988). Zbl 0648.73014, MR 0936420, 10.1016/S0168-2024(08)70055-9
Reference: [3] Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements.Applied Mathematical Sciences 159. Springer, New York (2004). Zbl 1059.65103, MR 2050138, 10.1007/978-1-4757-4355-5
Reference: [4] Gergelits, T., Mardal, K.-A., Nielsen, B. F., Strakoš, Z.: Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator.SIAM J. Numer. Anal. 57 (2019), 1369-1394. Zbl 07100344, MR 3961990, 10.1137/18M1212458
Reference: [5] Gergelits, T., Nielsen, B. F., Strakoš, Z.: Generalized spectrum of second order differential operators.SIAM J. Numer. Anal. 58 (2020), 2193-2211. Zbl 07236291, MR 4128499, 10.1137/20M1316159
Reference: [6] Gergelits, T., Strakoš, Z.: Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations.Numer. Algorithms 65 (2014), 759-782. Zbl 1298.65054, MR 3187962, 10.1007/s11075-013-9713-z
Reference: [7] Golub, G. H., Loan, C. F. Van: Matrix Computations.Johns Hopkins Studies in the Mathematical Sciences. The John Hopkins University Press, Baltimore (1996). Zbl 0865.65009, MR 1417720
Reference: [8] Liesen, J., Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). Zbl 1263.65034, MR 3024841, 10.1093/acprof:oso/9780199655410.001.0001
Reference: [9] Meurant, G., Strakoš, Z.: The Lanczos and conjugate gradient algorithms in finite precision arithmetic.Acta Numerica 15 (2006), 471-542. Zbl 1113.65032, MR 2269746, 10.1017/S096249290626001X
Reference: [10] Meurant, G., Tichý, P.: On computing quadrature-based bounds for the $A$-norm of the error in conjugate gradients.Numer. Algorithms 62 (2013), 163-191. Zbl 1261.65034, MR 3011386, 10.1007/s11075-012-9591-9
Reference: [11] Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Studies in Applied Mechanics 3. Elsevier, Amsterdam (1981). Zbl 0448.73009, MR 0600655, 10.1016/c2009-0-12554-0
Reference: [12] Nielsen, B. F., Tveito, A., Hackbusch, W.: Preconditioning by inverting the Laplacian: An analysis of the eigenvalues.IMA J. Numer. Anal. 29 (2009), 24-42. Zbl 1167.65066, MR 2470938, 10.1093/imanum/drm018
Reference: [13] Saad, Y.: Iterative Methods for Sparse Linear Systems.Society for Industrial and Applied Mathematics, Philadelphia (2003). Zbl 1031.65046, MR 1990645, 10.1137/1.9780898718003
Reference: [14] Serre, D.: Matrices: Theory and Applications.Graduate Texts in Mathematics 216. Springer, New York (2010). Zbl 1206.15001, MR 2744852, 10.1007/978-1-4419-7683-3
Reference: [15] Strakoš, Z.: On the real convergence rate of the conjugate gradient method.Linear Algebra Appl. 154-156 (1991), 535-549. Zbl 0732.65021, MR 1113159, 10.1016/0024-3795(91)90393-B
Reference: [16] Sluis, A. van der, Vorst, H. A. van der: The rate of convergence of conjugate gradients.Numer. Math. 48 (1986), 543-560. Zbl 0596.65015, MR 0839616, 10.1007/BF01389450
Reference: [17] Vorst, H. A. van der: Iterative Krylov Methods for Large Linear Systems.Cambridge Monographs on Applied and Computational Mathematics 13. Cambridge University Press, Cambridge (2003). Zbl 1023.65027, MR 1990752, 10.1017/CBO9780511615115
.

Files

Files Size Format View
AplMat_66-2021-1_2.pdf 1.280Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo