Previous |  Up |  Next

Article

Keywords:
naturally reductive homogeneous space; invariant Riemannian metric; invariant $(\alpha ,\beta )$-metric
Summary:
In the present paper we study naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. We show that for homogeneous $(\alpha ,\beta )$-metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces.
References:
[1] Asanov, G.S.: Finsleroid space with angle and scalar product. Publ. Math. Debrecen 67 (2005), 209–252. MR 2163126
[2] Asanov, G.S.: Finsleroid Finsler spaces of positive-definite and relativistic type. Rep. Math. Phys. 58 (2006), 275–300. DOI 10.1016/S0034-4877(06)80053-4 | MR 2281541
[3] Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer, Berlin, 2000. MR 1747675 | Zbl 0954.53001
[4] Chern, S.S., Shen, Z.: Riemann-Finsler geometry. Nankai Tracts in Mathematics, vol. 6, World Scientific, 2005. MR 2169595
[5] Deng, S., Hou, Z.: Invariant Finsler metrics on homogeneous manifolds. J. Phys. A: Math. Gen. 37 (2004), 8245–8253. DOI 10.1088/0305-4470/37/34/004 | MR 2092795 | Zbl 1062.58007
[6] Deng, S., Hou, Z.: Invariant Randers metrics on homogeneous Riemannian manifolds. J. Phys. A: Math. Gen. 37 (2004), 4353–4360. DOI 10.1088/0305-4470/37/15/004 | MR 2063598 | Zbl 1049.83005
[7] Deng, S., Hou, Z.: Naturally reductive homogeneous Finsler spaces. Manuscripta Math. 131 (2010), 215–229. DOI 10.1007/s00229-009-0314-z | MR 2574999
[8] Kikuchi, S.: On the condition that a space with $ (\alpha ,\beta ) $-metric be locally Minkowskian. Tensor, N.S. 33 (1979), 142–246. MR 0577431
[9] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Wiley-Interscience, New York, 1969. MR 0152974 | Zbl 0175.48504
[10] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57 (2007), 1421–1433. DOI 10.1016/j.geomphys.2006.11.004 | MR 2289656
[11] Latifi, D.: Naturally reductive homogeneous Randers spaces. J. Geom. Phys. 60 (2010), 1968–1973. DOI 10.1016/j.geomphys.2010.08.002 | MR 2735283
[12] Matsumoto, M.: The Berwald connection of a Finsler space with an $ (\alpha ,\beta ) $-metric. Tensor, N.S. 50 (1991), 18–21. MR 1156480
[13] Matsumoto, M.: Theory of Finsler spaces with $(\alpha ,\beta )$-metric. Rep. Math. Phys. 31 (1992), 43–83. DOI 10.1016/0034-4877(92)90005-L | MR 1208489
[14] Moghaddam, H.R. Salimi: The flag curvature of invariant $(\alpha ,\beta )-$metrics of type $\frac{(\alpha +\beta )^2}{\alpha }$. J. Phys. A: Math. Theor. 41 (2008), 6 pp., 275206. DOI 10.1088/1751-8113/41/27/275206 | MR 2455543
[15] Randers, G.: On an asymmetrical metric in the four-space of general relativity. On an asymmetrical metric in the four-space of general relativity 59 (1941), 195–199. MR 0003371 | Zbl 0027.18101
[16] Shen, Z.: Lectures on Finsler Geometry. World Scientific, 2001. MR 1845637 | Zbl 0974.53002
Partner of
EuDML logo