Previous |  Up |  Next

Article

Keywords:
Waring-Goldbach problem; Hardy-Littlewood method; exponential sum; short interval
Summary:
Let $N$ be a sufficiently large integer. We prove that almost all sufficiently large even integers $n\in [N-6U,N+6U]$ can be represented as $$ n=p_1^2+p_2^3+p_3^3+p_4^3+p_5^3+p_6^3, \Bigl | p_1^2-\dfrac {N}{6}\Bigr | \leq U, \quad \Bigl | p_i^3-\dfrac {N}{6}\Bigr |\leq U, \quad i=2,3,4,5,6, $$ where $U=N^{1-\delta +\varepsilon }$ with $\delta \leq 8/225$.
References:
[1] Cai, Y.: The Waring-Goldbach problem: One square and five cubes. Ramanujan J. 34 (2014), 57-72. DOI 10.1007/s11139-013-9486-y | MR 3210255 | Zbl 1304.11121
[2] Hua, L. K.: Additive Theory of Prime Numbers. Translations of Mathematical Monographs 13. American Mathematical Society, Providence (1965). DOI 10.1090/mmono/013 | MR 0194404 | Zbl 0192.39304
[3] Kumchev, A. V.: On Weyl sums over primes in short intervals. Number Theory: Arithmetic in Shangri-La Series on Number Theory and Its Applications 8. World Scientific, Hackensack (2013), 116-131. DOI 10.1142/9789814452458_0007 | MR 3089013 | Zbl 1368.11095
[4] Li, J., Zhang, M.: On the Waring-Goldbach problem for one square and five cubes. Int. J. Number Theory 14 (2018), 2425-2440. DOI 10.1142/S1793042118501476 | MR 3855467 | Zbl 06940656
[5] Liu, J.: On Lagrange's theorem with prime variables. Q. J. Math. 54 (2003), 453-462. DOI 10.1093/qmath/hag028 | MR 2031178 | Zbl 1080.11071
[6] Pan, C., Pan, C.: Goldbach Conjecture. Science Press, Beijing (1992). MR 1287852 | Zbl 0849.11080
[7] Sinnadurai, J. S.-C. L.: Representation of integers as sums of six cubes and one square. Q. J. Math., Oxf. II. Ser. 16 (1965), 289-296. DOI 10.1093/qmath/16.4.289 | MR 0186650 | Zbl 0144.28101
[8] Stanley, G. K.: The representation of a number as the sum of one square and a number of $k$-th powers. Proc. Lond. Math. Soc. (2) 31 (1930), 512-553 \99999JFM99999 56.0174.01. DOI 10.1112/plms/s2-31.1.512 | MR 1577483
[9] Stanley, G. K.: The representation of a number as a sum of squares and cubes. J. London Math. Soc. 6 (1931), 194-197. DOI 10.1112/jlms/s1-6.3.194 | MR 1574741 | Zbl 0002.18203
[10] Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function. Oxford University Press, New York (1986). MR 0882550 | Zbl 0601.10026
[11] Vaughan, R. C.: On Waring's problem for smaller exponents. Proc. Lond. Math. Soc., III. Ser. 52 (1986), 445-463. DOI 10.1112/plms/s3-52.3.445 | MR 0833645 | Zbl 0601.10035
[12] Vaughan, R. C.: On Waring's problem: One square and five cubes. Q. J. Math., Oxf. II. Ser. 37 (1986), 117-127. DOI 10.1093/qmath/37.1.117 | MR 0830635 | Zbl 0589.10047
[13] Vaughan, R. C.: The Hardy-Littlewood Method. Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). DOI 10.1017/CBO9780511470929 | MR 1435742 | Zbl 0868.11046
[14] Vinogradov, I. M.: Elements of Number Theory. Dover Publications, New York (1954). MR 0062138 | Zbl 0057.28201
[15] Watson, G. L.: On sums of a square and five cubes. J. Lond. Math. Soc., II. Ser. 5 (1972), 215-218. DOI 10.1112/jlms/s2-5.2.215 | MR 0314787 | Zbl 0241.10032
[16] Wooley, T. D.: Slim exceptional sets in Waring's problem: One square and five cubes. Q. J. Math. 53 (2002), 111-118. DOI 10.1093/qjmath/53.1.111 | MR 1887673 | Zbl 1015.11049
[17] Zhang, M., Li, J.: Waring-Goldbach problem for unlike powers with almost equal variables. Int. J. Number Theory 14 (2018), 2441-2472. DOI 10.1142/S1793042118501488 | MR 3855468 | Zbl 06940657
[18] Zhao, L.: On the Waring-Goldbach problem for fourth and sixth powers. Proc. Lond. Math. Soc. (3) 108 (2014), 1593-1622. DOI 10.1112/plms/pdt072 | MR 3218320 | Zbl 1370.11116
Partner of
EuDML logo