| Title:
             | 
Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup (English) | 
| Author:
             | 
Shi, Jiangtao | 
| Author:
             | 
Li, Na | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
71 | 
| Issue:
             | 
4 | 
| Year:
             | 
2021 | 
| Pages:
             | 
1229-1233 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Let $G$ be a finite group. We prove that if every self-centralizing subgroup of $G$ is nilpotent or subnormal or a TI-subgroup, then every subgroup of $G$ is nilpotent or subnormal. Moreover, $G$ has either a normal Sylow $p$-subgroup or a normal $p$-complement for each prime divisor $p$ of $|G|$. (English) | 
| Keyword:
             | 
self-centralizing | 
| Keyword:
             | 
nilpotent | 
| Keyword:
             | 
TI-subgroup | 
| Keyword:
             | 
subnormal | 
| Keyword:
             | 
$p$-complement | 
| MSC:
             | 
20D10 | 
| idZBL:
             | 
Zbl 07442488 | 
| idMR:
             | 
MR4339125 | 
| DOI:
             | 
10.21136/CMJ.2021.0512-20 | 
| . | 
| Date available:
             | 
2021-11-08T16:07:59Z | 
| Last updated:
             | 
2024-01-01 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/149252 | 
| . | 
| Reference:
             | 
[1] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80. Springer, New York (1996). Zbl 0836.20001, MR 1357169, 10.1007/978-1-4419-8594-1 | 
| Reference:
             | 
[2] Shi, J.: Finite groups in which every non-abelian subgroup is a TI-subgroup or a subnormal subgroup.J. Algebra Appl. 18 (2019), Article ID 1950159, 4 pages. Zbl 07096474, MR 3977820, 10.1142/S0219498819501597 | 
| Reference:
             | 
[3] Shi, J., Zhang, C.: Finite groups in which every subgroup is a subnormal subgroup or a TI-subgroup.Arch. Math. 101 (2013), 101-104. Zbl 1277.20021, MR 3089764, 10.1007/s00013-013-0545-9 | 
| Reference:
             | 
[4] Shi, J., Zhang, C.: A note on TI-subgroups of a finite group.Algebra Colloq. 21 (2014), 343-346. Zbl 1291.20018, MR 3192353, 10.1142/S1005386714000297 | 
| Reference:
             | 
[5] Sun, Y., Lu, J., Meng, W.: Finite groups whose non-abelian self-centralizing subgroups are TI-subgroups or subnormal subgroups.J. Algebra Appl. 20 (2021), Article ID 2150040, 5 pages. Zbl 07347720, MR 4242212, 10.1142/S0219498821500407 | 
| . |