[3] Agricola, I., Becker-Bender, J., Kim, H.: 
Twistorial eigenvalue estimates for generalized Dirac operators with torsion. Adv. Math., 243, 2013, 296-329,  
DOI 10.1016/j.aim.2013.05.001 | 
MR 3062748[4] Ammann, B., Bär, C.: 
The Einstein-Hilbert action as a spectral action. Noncommutative Geometry and the Standard Model of Elementary Particle Physics, 2002, 75-108,  
MR 1998531[5] Besse, A.L.: 
Einstein manifolds. 1987, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag,  
Zbl 0613.53001[6] Chrysikos, I.: 
Invariant connections with skew-torsion and $\nabla $-Einstein manifolds. J. Lie Theory, 26, 2016, 11-48,  
MR 3384980[9] Chrysikos, I., Gustad, C. O'Cadiz, Winther, H.: 
Invariant connections and $\nabla $-Einstein structures on isotropy irreducible spaces. J. Geom. Phys., 138, 2019, 257-284,  
DOI 10.1016/j.geomphys.2018.10.012 | 
MR 3945042[12] Friedrich, Th., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math., 6, 1962, 64-94, 
[14] Kühnel, W.: 
Differential Geometry, Curves--Surfaces--Manifolds. 2002, Amer. Math. Soc. Student Math. Library,  
MR 1882174[15] Ville, M.: Sur le volume des variétés riemanniennes pincées. Bulletin de la S. M. F., 115, 1987, 127-139,