[1] Blair, D. E.: 
Contact Manifolds in Riemannian Geometry. 1976, Lecture Notes on Mathematics 509. Springer-Verlag, Berlin-New York,  
Zbl 0319.53026[2] Blair, D. E.: 
Riemannian Geometry of Contact and Symplectic Manifolds (second edition). 2010, Progress in Mathematics 203. Birkhäuser, Boston,  
MR 2682326[3] Blair, D. E., Koufogiorgos, T., Papantoniou, B. J.: 
Contact metric manifolds satisfying a nullity condition. Israel. J. Math., 91, 1-3, 1995, 189-214,  
DOI 10.1007/BF02761646 | 
Zbl 0837.53038[4] Dey, D., Majhi, P.: 
On the quasi-conformal curvature tensor of an almost Kenmotsu manifold with nullity distributions. Facta Univ. Ser. Math. Inform., 33, 2, 2018, 255-268,  
MR 3859876[7] Ghosh, G., Majhi, P., De, U. C.: 
On a classification of almost Kenmotsu manifolds with generalized $(k,\mu )'$-nullity distribution. Kyungpook Math. J., 58, 1, 2018, 137-148,  
MR 3796023[8] Kenmotsu, K.: 
A class of almost contact Riemannian manifolds. Tohoku Math. J. (2), 24, 1972, 93-103,  
Zbl 0245.53040[9] Kowalczyk, D.: 
On some subclass of semisymmetric manifolds. Soochow J. Math., 27, 4, 2001, 445-461,  
MR 1867812[10] Pastore, A. M., Saltarelli, V.: 
Generalized nullity distribution on almost Kenmotsu manifolds. Int. Elec. J. Geom., 4, 2, 2011, 168-183,  
MR 2929587[11] Verheyen, P., Verstraelen, L.: A new intrinsic characterization of hypercylinders in Euclidean spaces. Kyungpook Math. J., 25, 1, 1985, 1-4, 
[12] Verstraelen, L.: Comments on pseudosymmetry in the sense of Ryszard Deszcz. In: Geometry and Topology of Submanifolds, VI. River Edge. NJ: World Sci. Publishing, 6, 1994, 199-209, 
[13] Wang, Y., Liu, X.: 
Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions. Ann. Polon. Math., 112, 1, 2014, 37-46,  
DOI 10.4064/ap112-1-3 | 
MR 3244913[14] Wang, Y., Liu, X.: 
On $\phi $-recurrent almost Kenmotsu manifolds. Kuwait J. Sci., 42, 1, 2015, 65-77,  
MR 3331380[15] Wang, Y., Wang, W.: 
Curvature properties of almost Kenmotsu manifolds with generalized nullity conditions. Filomat, 30, 14, 2016, 3807-3816,  
DOI 10.2298/FIL1614807W | 
MR 3593751