| Title:
             | 
Uniqueness of weak solutions to a Keller-Segel-Navier-Stokes model with a logistic source (English) | 
| Author:
             | 
Chen, Miaochao | 
| Author:
             | 
Lu, Shengqi | 
| Author:
             | 
Liu, Qilin | 
| Language:
             | 
English | 
| Journal:
             | 
Applications of Mathematics | 
| ISSN:
             | 
0862-7940 (print) | 
| ISSN:
             | 
1572-9109 (online) | 
| Volume:
             | 
67 | 
| Issue:
             | 
1 | 
| Year:
             | 
2022 | 
| Pages:
             | 
93-101 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We prove a uniqueness result of weak solutions to the $nD$ $(n\geq 3)$ Cauchy problem of a Keller-Segel-Navier-Stokes system with a logistic term. (English) | 
| Keyword:
             | 
Keller-Segel-Navier-Stokes system | 
| Keyword:
             | 
uniqueness | 
| Keyword:
             | 
weak solution | 
| MSC:
             | 
22E46 | 
| MSC:
             | 
35Q30 | 
| MSC:
             | 
53C35 | 
| MSC:
             | 
57S20 | 
| MSC:
             | 
76D05 | 
| idZBL:
             | 
Zbl 07478519 | 
| idMR:
             | 
MR4392407 | 
| DOI:
             | 
10.21136/AM.2021.0069-20 | 
| . | 
| Date available:
             | 
2022-02-08T10:50:08Z | 
| Last updated:
             | 
2024-03-04 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/149361 | 
| . | 
| Reference:
             | 
[1] Biler, P.: Global solutions to some parabolic-elliptic systems of chemotaxis.Adv. Math. Sci. Appl. 9 (1999), 347-359. Zbl 0941.35009, MR 1690388 | 
| Reference:
             | 
[2] Corrias, L., Perthame, B., Zaag, H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions.Milan J. Math. 72 (2004), 1-28. Zbl 1115.35136, MR 2099126, 10.1007/s00032-003-0026-x | 
| Reference:
             | 
[3] Fan, J., Jing, L., Nakamura, G., Zhao, K.: Qualitative analysis of an integrated chemotaxis-fluid model: Global existence and extensibility criterion.Commun. Math. Sci. 18 (2020), 809-836. MR 4120539, 10.4310/CMS.2020.v18.n3.a10 | 
| Reference:
             | 
[4] Fan, J., Li, F.: Global strong solutions to a coupled chemotaxis-fluid model with subcritical sensitivity.Acta Appl. Math. 169 (2020), 767-791. MR 4146923, 10.1007/s10440-020-00321-1 | 
| Reference:
             | 
[5] Fan, J., Zhao, K.: Improved extensibility criteria and global well-posedness of a coupled chemotaxis-fluid model on bounded domains.Discrete Contin. Dyn. Syst., Ser. B 23 (2018), 3949-3967. Zbl 1406.35271, MR 3927584, 10.3934/dcdsb.2018119 | 
| Reference:
             | 
[6] Hillen, T., Painter, K. J.: A user's guide to PDE models for chemotaxis.J. Math. Biol. 58 (2009), 183-217. Zbl 1161.92003, MR 2448428, 10.1007/s00285-008-0201-3 | 
| Reference:
             | 
[7] Horstmann, D.: From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I.Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165. Zbl 1071.35001, MR 2013508 | 
| Reference:
             | 
[8] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability.J. Theor. Biol. 26 (1970), 399-415. Zbl 1170.92306, MR 3925816, 10.1016/0022-5193(70)90092-5 | 
| Reference:
             | 
[9] Keller, E. F., Segel, L. A.: Model for chemotaxis.J. Theor. Biol. 30 (1971), 225-234. Zbl 1170.92307, 10.1016/0022-5193(71)90050-6 | 
| Reference:
             | 
[10] Keller, E. F., Segel, L. A.: Traveling bands of chemotactic bacteria: A theoretical analysis.J. Theor. Biol. 30 (1971), 235-248. Zbl 1170.92308, 10.1016/0022-5193(71)90051-8 | 
| Reference:
             | 
[11] Kozono, H., Miura, M., Sugiyama, Y.: Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid.J. Func. Anal. 270 (2016), 1663-1683. Zbl 1343.35069, MR 3452713, 10.1016/j.jfa.2015.10.016 | 
| Reference:
             | 
[12] Kozono, H., Ogawa, T., Taniuchi, Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations.Math. Z. 242 (2002), 251-278. Zbl 1055.35087, MR 1980623, 10.1007/s002090100332 | 
| Reference:
             | 
[13] Maz'ya, V. G., Shaposhnikova, T. O.: Theory of Multipliers in Spaces of Differentiable Functions.Monographs and Studies in Mathematics 23. Pitman, Bostan (1985). Zbl 0645.46031, MR 0785568 | 
| Reference:
             | 
[14] Ogawa, T., Taniuchi, Y.: The limiting uniqueness criterion by vorticity for Navier-Stokes equations in Besov spaces.Tohoku Math. J., II. Ser. 56 (2004), 65-77. Zbl 1083.35096, MR 2028918, 10.2748/tmj/1113246381 | 
| Reference:
             | 
[15] Sleeman, B. D., Ward, M. J., Wei, J. C.: The existence and stability of spike patterns in a chemotaxis model.SIAM J. Appl. Math. 65 (2005), 790-817. Zbl 1073.35118, MR 2136032, 10.1137/S0036139902415117 | 
| Reference:
             | 
[16] Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity.Math. Methods Appl. Sci. 34 (2011), 176-190. Zbl 1291.92018, MR 2778870, 10.1002/mma.1346 | 
| Reference:
             | 
[17] Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stablization.J. Funct. Anal. 276 (2019), 1339-1401. Zbl 1408.35132, MR 3912779, 10.1016/j.jfa.2018.12.009 | 
| Reference:
             | 
[18] Wrzosek, D.: Long-time behaviour of solutions to a chemotaxis model with volume filling-effect.Proc. R. Soc. Edinb., Sect. A, Math. 136 (2006), 431-444. Zbl 1104.35007, MR 2218162, 10.1017/S0308210500004649 | 
| . |