Previous |  Up |  Next

Article

Keywords:
Euclidean sphere; closed hypersurfaces; $(r+1)$-th mean curvature; strong $r$-stability; geodesic spheres; upper (lower) domain enclosed by a geodesic sphere
Summary:
We study the notion of strong $r$-stability for the context of closed hypersurfaces $\Sigma ^n$ ($n\ge 3$) with constant $(r+1)$-th mean curvature $H_{r+1}$ immersed into the Euclidean sphere $\mathbb{S}^{n+1}$, where $r\in \lbrace 1,\ldots ,n-2\rbrace $. In this setting, under a suitable restriction on the $r$-th mean curvature $H_r$, we establish that there are no $r$-strongly stable closed hypersurfaces immersed in a certain region of $\mathbb{S}^{n+1}$, a region that is determined by a totally umbilical sphere of $\mathbb{S}^{n+1}$. We also provide a rigidity result for such hypersurfaces.
References:
[1] Alencar, H., do Carmo, M., Colares, A.G.: Stable hypersurfaces with constant scalar curvature. Math. Z. 213 (1993), 117–131. DOI 10.1007/BF03025712 | Zbl 0792.53057
[2] Alías, L.J., Barros, A., Brasil Jr., A.: A spectral characterization of the $H(r)$-torus by the first stability eigenvalue. Proc. Amer. Math. Soc. 133 (2005), 875–884. DOI 10.1090/S0002-9939-04-07559-8 | MR 2113939
[3] Alías, L.J., Brasil Jr., A., Perdomo, O.: On the stability index of hypersurfaceswith constant mean curvature in spheres. Proc. Amer. Math. Soc. 135 (2007), 3685–3693. DOI 10.1090/S0002-9939-07-08886-7 | MR 2336585
[4] Alías, L.J., Brasil Jr., A., Sousa Jr., L.: A characterization of Clifford tori with constant scalar curvatrue one by the first stability eigenvalue. Bull. Braz. Math. Soc. 35 (2004), 165–175. DOI 10.1007/s00574-004-0009-8 | MR 2081021
[5] Aquino, C.P., de Lima, H.: On the rigidity of constant mean curvature complete vertical graphs in warped products. Differential Geom. Appl. 29 (2011), 590–596. DOI 10.1016/j.difgeo.2011.04.039 | MR 2811668
[6] Aquino, C.P., de Lima, H.F., dos Santos, Fábio R., Velásquez, Marco A.L.: On the first stability eigenvalue of hypersurfaces in the Euclidean and hyperbolic spaces. Quaest. Math. 40 (2017), 605–616. DOI 10.2989/16073606.2017.1305463 | MR 3691472
[7] Barbosa, J.L.M., Colares, A.G.: Stability of hypersurfaces with constant $r$-mean curvature. Ann. Global Anal. Geom. 15 (1997), 277–297. DOI 10.1023/A:1006514303828 | Zbl 0891.53044
[8] Barbosa, J.L.M., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185 (1984), 339–353. DOI 10.1007/BF01215045 | Zbl 0513.53002
[9] Barbosa, J.L.M., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z. 197 (1988), 1123–138.
[10] Barros, A., Sousa, P.: Compact graphs over a sphere of constant second order mean curvature. Proc. Amer. Math. Soc. 137 (2009), 3105–3114. DOI 10.1090/S0002-9939-09-09862-1 | MR 2506469 | Zbl 1189.53058
[11] Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, Inc., 1984.
[12] Cheng, Q.: First eigenvalue of a Jacobi operator of hypersurfaces with a constant scalar curvature. Proc. Amer. Math. Soc. 136 (2008), 3309–3318. DOI 10.1090/S0002-9939-08-09304-0 | MR 2407097
[13] Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. DOI 10.1007/BF01425237 | Zbl 0349.53041
[14] de Lima, H.F., Velásquez, Marco A.L.: A new characterization of $r$-stable hypersurfaces in space forms. Arch. Math. (Brno) 47 (2011), 119–131. MR 2813538
[15] Montiel, S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48 (1999), 711–748. DOI 10.1512/iumj.1999.48.1562
[16] Reilly, R.C.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differential Geom. 8 (1973), 465–477. DOI 10.4310/jdg/1214431802 | Zbl 0277.53030
Partner of
EuDML logo