| Title:
             | 
On the convergence theory of double $K$-weak splittings of type II (English) | 
| Author:
             | 
Shekhar, Vaibhav | 
| Author:
             | 
Mishra, Nachiketa | 
| Author:
             | 
Mishra, Debasisha | 
| Language:
             | 
English | 
| Journal:
             | 
Applications of Mathematics | 
| ISSN:
             | 
0862-7940 (print) | 
| ISSN:
             | 
1572-9109 (online) | 
| Volume:
             | 
67 | 
| Issue:
             | 
3 | 
| Year:
             | 
2022 | 
| Pages:
             | 
341-369 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Recently, Wang (2017) has introduced the $K$-nonnegative double splitting using the notion of matrices that leave a cone $K\subseteq \mathbb {R}^{n}$ invariant and studied its convergence theory by generalizing the corresponding results for the nonnegative double splitting by Song and Song (2011). However, the convergence theory for $K$-weak regular and $K$-nonnegative double splittings of type II is not yet studied. In this article, we first introduce this class of splittings and then discuss the convergence theory for these sub-classes of matrices. We then obtain the comparison results for two double splittings of a $K$-monotone matrix. Most of these results are completely new even for $K= \mathbb {R}^{n}_+$. The convergence behavior is discussed by performing numerical experiments for different matrices derived from the discretized Poisson equation. (English) | 
| Keyword:
             | 
linear system | 
| Keyword:
             | 
iterative method | 
| Keyword:
             | 
$K$-nonnegativity | 
| Keyword:
             | 
double splitting | 
| Keyword:
             | 
convergence theorem | 
| Keyword:
             | 
comparison theorem | 
| MSC:
             | 
15A06 | 
| MSC:
             | 
15A09 | 
| MSC:
             | 
15B48 | 
| MSC:
             | 
65F10 | 
| idZBL:
             | 
Zbl 07547199 | 
| idMR:
             | 
MR4409310 | 
| DOI:
             | 
10.21136/AM.2021.0270-20 | 
| . | 
| Date available:
             | 
2022-04-14T13:36:52Z | 
| Last updated:
             | 
2024-07-01 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/150319 | 
| . | 
| Reference:
             | 
[1] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences.Classics in Applied Mathematics 9. SIAM, Philadelphia (1994). Zbl 0815.15016, MR 1298430, 10.1137/1.9781611971262 | 
| Reference:
             | 
[2] Climent, J.-J., Perea, C.: Some comparison theorems for weak nonnegative splittings of bounded operators.Linear Algebra Appl. 275-276 (1998), 77-106. Zbl 0936.65063, MR 1628383, 10.1016/S0024-3795(97)10065-9 | 
| Reference:
             | 
[3] Climent, J.-J., Perea, C.: Comparison theorems for weak nonnegative splittings of $K$-monotone matrices.Electron. J. Linear Algebra 5 (1999), 24-38. Zbl 0919.65023, MR 1668923, 10.13001/1081-3810.1029 | 
| Reference:
             | 
[4] Climent, J.-J., Perea, C.: Comparison theorems for weak splittings in respect to a proper cone of nonsingular matrices.Linear Algebra Appl. 302-303 (1999), 355-366. Zbl 0948.65030, MR 1733540, 10.1016/S0024-3795(99)00158-5 | 
| Reference:
             | 
[5] Collatz, L.: Functional Analysis and Numerical Mathematics.Academic Press, New York (1966). Zbl 0148.39002, MR 0205126 | 
| Reference:
             | 
[6] Golub, G. H., Loan, C. F. Van: Matrix Computations.The John Hopkins University Press, Baltimore (1996). Zbl 0865.65009, MR 1417720 | 
| Reference:
             | 
[7] Golub, G. H., Varga, R. S.: Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods I.Numer. Math. 3 (1961), 147-156. Zbl 0099.10903, MR 145678, 10.1007/BF01386013 | 
| Reference:
             | 
[8] Hou, G.: Comparison theorems for double splittings of $K$-monotone matrices.Appl. Math. Comput. 244 (2014), 382-389. Zbl 1335.15015, MR 3250585, 10.1016/j.amc.2014.06.101 | 
| Reference:
             | 
[9] Marek, I., Szyld, D. B.: Comparison theorems for weak splittings of bounded operators.Numer. Math. 58 (1990), 389-397. Zbl 0694.65023, MR 1077585, 10.1007/BF01385632 | 
| Reference:
             | 
[10] Miao, S.-X., Zheng, B.: A note on double splittings of different monotone matrices.Calcolo 46 (2009), 261-266. Zbl 1185.65058, MR 2563785, 10.1007/s10092-009-0011-z | 
| Reference:
             | 
[11] Nandi, A. K., Shekhar, V., Mishra, N., Mishra, D.: Alternating stationary iterative methods based on double splittings.Comput. Math. Appl. 89 (2021), 87-98. Zbl 7336184, MR 4233331, 10.1016/j.camwa.2021.02.015 | 
| Reference:
             | 
[12] Saad, Y.: Iterative Methods for Sparse Linear Systems.SIAM, Philadelphia (2003). Zbl 1031.65046, MR 1990645, 10.1137/1.9780898718003 | 
| Reference:
             | 
[13] Shekhar, V., Giri, C. K., Mishra, D.: A note on double weak splittings of type II.(to appear) in Linear Multilinear Algebra. 10.1080/03081087.2020.1795057 | 
| Reference:
             | 
[14] Shen, S.-Q., Huang, T.-Z.: Convergence and comparison theorems for double splittings of matrices.Comput. Math. Appl. 51 (2006), 1751-1760. Zbl 1134.65341, MR 2245703, 10.1016/j.camwa.2006.02.006 | 
| Reference:
             | 
[15] Shen, S.-Q., Huang, T.-Z., Shao, J.-L.: Convergence and comparison results for double splittings of Hermitian positive definite matrices.Calcolo 44 (2007), 127-135. Zbl 1150.65008, MR 2352718, 10.1007/s10092-007-0132-1 | 
| Reference:
             | 
[16] Song, Y.: Comparison theorems for splittings of matrices.Numer. Math. 92 (2002), 563-591. Zbl 1012.65028, MR 1930390, 10.1007/s002110100333 | 
| Reference:
             | 
[17] Song, J., Song, Y.: Convergence for nonnegative double splittings of matrices.Calcolo 48 (2011), 245-260. Zbl 1232.65056, MR 2827007, 10.1007/s10092-010-0037-2 | 
| Reference:
             | 
[18] Wang, C.: Comparison results for $K$-nonnegative double splittings of $K$-monotone matrices.Calcolo 54 (2017), 1293-1303. Zbl 1385.65028, MR 3735816, 10.1007/s10092-017-0230-7 | 
| Reference:
             | 
[19] Woźnicki, Z. I.: Estimation of the optimum relaxation factors in partial factorization iterative methods.SIAM J. Matrix Anal. Appl. 14 (1993), 59-73. Zbl 0767.65025, MR 1199544, 10.1137/0614005 | 
| . |