Previous |  Up |  Next

Article

Title: Positive solutions for concave-convex elliptic problems involving $p(x)$-Laplacian (English)
Author: Dammak, Makkia
Author: Amor Ben Ali, Abir
Author: Taarabti, Said
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 2
Year: 2022
Pages: 155-168
Summary lang: English
.
Category: math
.
Summary: We study the existence and nonexistence of positive solutions of the nonlinear equation $$ -\Delta _{p(x)} u = \lambda k(x) u^{q} \pm h(x) u^r\ \text {in}\ \Omega ,\quad u=0\ \text {on}\ \partial \Omega $$ where $\Omega \subset \mathbb {R}^N$, $N\geq 2$, is a regular bounded open domain in $\mathbb {R}^N$ and the $p(x)$-Laplacian $$ \Delta _{p(x)} u := \mbox {div}( |\nabla u|^{p(x)-2} \nabla u) $$ is introduced for a continuous function $p(x)>1$ defined on $\Omega $. The positive parameter $\lambda $ induces the bifurcation phenomena. The study of the equation (Q) needs generalized Lebesgue and Sobolev spaces. In this paper, under suitable assumptions, we show that some variational methods still work. We use them to prove the existence of positive solutions to the problem (Q) in $W_0^{1,p(x)}(\Omega )$. When we prove the existence of minimal solution, we use the sub-super solutions method. (English)
Keyword: variable exponent Sobolev space
Keyword: $p(x)$-Laplace operator
Keyword: concave-convex nonlinearities
Keyword: variational method
MSC: 35J20
MSC: 35J60
MSC: 35J62
MSC: 35J70
MSC: 35K57
idZBL: Zbl 07547247
idMR: MR4407349
DOI: 10.21136/MB.2021.0099-20
.
Date available: 2022-04-14T13:39:46Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/150325
.
Reference: [1] Alves, C. O., Barreiro, J. L. P.: Existence and multiplicity of solutions for a $p(x)$-Laplacian equation with critical growth.J. Math. Anal. Appl. 403 (2013), 143-154. Zbl 1283.35043, MR 3035079, 10.1016/j.jmaa.2013.02.025
Reference: [2] Alves, C. O., Souto, M. A. S.: Existence of solutions for a class of problems in $ \Bbb{R}^N $ involving the $p(x)$-Laplacian.Contributions to Nonlinear Analysis Progress in Nonlinear Differential Equations and their Applications 66. Birkhäuser, Basel (2006), 17-32. Zbl 1193.35082, MR 2187792, 10.1007/3-7643-7401-2_2
Reference: [3] Ambrosetti, A., Brézis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems.J. Funct. Anal. 122 (1994), 519-543. Zbl 0805.35028, MR 1276168, 10.1006/jfan.1994.1078
Reference: [4] Antontsev, S. N., Shmarev, S. I.: A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localisation properties of solutions.Nonlinear Anal., Theory Methods Appl., Ser. A 60 (2005), 515-545. Zbl 1066.35045, MR 2103951, 10.1016/j.na.2004.09.026
Reference: [5] Chabrowski, J., Fu, Y.: Existence of solutions for $p(x)$-Laplacian problems on a bounded domain.J. Math. Anal. Appl. 306 (2005), 604-618. Zbl 1160.35399, MR 2136336, 10.1016/j.jmaa.2004.10.028
Reference: [6] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration.SIAM J. Appl. Math. 66 (2006), 1383-1406. Zbl 1102.49010, MR 2246061, 10.1137/050624522
Reference: [7] Silva, J. P. P. Da: On some multiple solutions for a $p(x)$-Laplacian equation with critical growth.J. Math. Anal. Appl. 436 (2016), 782-795. Zbl 1335.35082, MR 3446979, 10.1016/j.jmaa.2015.11.078
Reference: [8] Edmunds, D. E., Rákosník, J.: Density of smooth functions in $W^{k,p(x)}(\Omega)$.Proc. R. Soc. Lond., Ser. A 437 (1992), 229-236. Zbl 0779.46027, MR 1177754, 10.1098/rspa.1992.0059
Reference: [9] Edmunds, D. E., Rákosník, J.: Sobolev embedding with variable exponent.Stud. Math. 143 (2000), 267-293. Zbl 0974.46040, MR 1815935, 10.4064/sm-143-3-267-293
Reference: [10] Fan, X.: On the sub-supersolution method for $p(x)$-Laplacian equations.J. Math. Anal. Appl. 330 (2007), 665-682. Zbl 1206.35103, MR 2302951, 10.1016/j.jmaa.2006.07.093
Reference: [11] Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$.J. Math. Anal. Appl. 262 (2001), 749-760. Zbl 0995.46023, MR 1859337, 10.1006/jmaa.2001.7618
Reference: [12] Fan, X., Zhao, D.: On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$.J. Math. Anal. Appl. 263 (2001), 424-446. Zbl 1028.46041, MR 1866056, 10.1006/jmaa.2000.7617
Reference: [13] Kefi, K.: $p(x)$-Laplacian with indefinite weight.Proc. Am. Math. Soc. 139 (2011), 4351-4360. Zbl 1237.35054, MR 2823080, 10.1090/S0002-9939-2011-10850-5
Reference: [14] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. Zbl 0784.46029, MR 1134951, 10.21136/CMJ.1991.102493
Reference: [15] Marcos, A., Abdou, A.: Existence of solutions for a nonhomogeneous Dirichlet problem involving $p(x)$-Laplacian operator and indefinite weight.Bound. Value Probl. 2019 (2019), Article ID 171, 21 pages. MR 4025568, 10.1186/s13661-019-1276-z
Reference: [16] Orlicz, W.: Über konjugierte Exponentenfolgen.Stud. Math. 3 (1931), 200-211 German. Zbl 0003.25203, 10.4064/sm-3-1-200-211
Reference: [17] Rădulescu, V., Repovš, D.: Combined effects in nonlinear problems arising in the study of anisotropic continuous media.Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 1524-1530. Zbl 1237.35043, MR 2861354, 10.1016/j.na.2011.01.037
Reference: [18] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748. Springer, Berlin (2000). Zbl 0962.76001, MR 1810360, 10.1007/BFb0104029
Reference: [19] Saoudi, K.: Existence and nonexistence of positive solutions for quasilinear elliptic problem.Abstr. Appl. Anal. 2012 (2012), Article ID 275748, 9 pages. Zbl 1250.35086, MR 2955036, 10.1155/2012/275748
Reference: [20] Saoudi, K.: Existence and multiplicity of solutions for a quasilinear equation involving the $p(x)$-Laplace operator.Complex Var. Elliptic Equ. 62 (2017), 318-332. Zbl 06707978, MR 3598980, 10.1080/17476933.2016.1219999
Reference: [21] Silva, A.: Multiple solutions for the $p(x)$-Laplace operator with critical growth.Adv. Nonlinear Stud. 11 (2011), 63-75. Zbl 1226.35049, MR 2724542, 10.1515/ans-2011-0103
Reference: [22] Takáč, P., Giacomoni, J.: A $p(x)$-Laplacian extension of the Díaz-Saa inequality and some applications.Proc. R. Soc. Edinb., Sect. A, Math. 150 (2020), 205-232. Zbl 1436.35210, MR 4065080, 10.1017/prm.2018.91
Reference: [23] Yücedağ, Z.: Solutions of nonlinear problems involving $p(x)$-Laplacian operator.Adv. Nonlinear Anal. 4 (2015), 285-293. Zbl 1328.35058, MR 3420320, 10.1515/anona-2015-0044
Reference: [24] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory.Math. USSR, Izv. 29 (1987), 33-66 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 1986 675-710. Zbl 0599.49031, MR 0864171, 10.1070/IM1987v029n01ABEH000958
Reference: [25] Zhikov, V. V.: On passage to the limit in nonlinear variational problems.Russian Acad. Sci. Sb. Math. 76 (1993), 427-459 translation from Mat. Sb. 183 1992 47-84. Zbl 0767.35021, MR 1187249, 10.1070/SM1993v076n02ABEH003421
.

Files

Files Size Format View
MathBohem_147-2022-2_2.pdf 267.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo