[1] Balakrishnan, A. V., Taylor, L. W.: Distributed parameter nonlinear damping models for flight structures. Proceedings Damping 89. Report Number: WRDC-TR-89-3116 Volume II p. FDC-1 Flight Dynamics Laboratory, Chicago (1989), 9 pages.
[2] Bass, R. W., Zes, D.: Spillover, nonlinearity and flexible structures. 4th NASA Workshop on Computational Control of Flexible Aerospace Systems NASA Conference Publication 10065. NASA. Langley Research Center, Hampton (1991), 1-14.
[3] Boulaaras, S.: 
Polynomial decay rate for a new class of viscoelastic Kirchhoff equation related with Balakrishnan-Taylor dissipationand logarithmic source terms. Alexandria Eng. J. 59 (2020), 1059-1071. 
DOI 10.1016/j.aej.2019.12.013[4] Boulaaras, S., Draifia, A., Zennir, K.: 
General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity. Math. Methods Appl. Sci. 42 (2019), 4795-4814. 
DOI 10.1002/mma.5693 | 
MR 3992940 | 
Zbl 1428.35037[6] Boumaza, N., Boulaaras, S.: 
General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel. Math. Methods Appl. Sci. 41 (2018), 6050-6069. 
DOI 10.1002/mma.5117 | 
MR 3879228 | 
Zbl 1415.35038[7] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A.: 
Existence and exponential decay for a Kirchhoff-Carrier model with viscosity. J. Math. Anal. Appl. 226 (1998), 40-60. 
DOI 10.1006/jmaa.1998.6057 | 
MR 1646453 | 
Zbl 0914.35081[8] Emmrich, E., Thalhammer, M.: 
A class of integro-differential equations incorporating nonlinear and nonlocal damping with applications in nonlinear elastodynamics: Existence via time discretization. Nonlinearity 24 (2011), 2523-2546. 
DOI 10.1088/0951-7715/24/9/008 | 
MR 2819935 | 
Zbl 1222.74021[21] Lee, M. J., Kim, D., Park, J. Y.: 
General decay of solutions for Kirchhoff type containing Balakrishnan-Taylor damping with a delay and acoustic boundary conditions. Bound. Value Probl. 2016 (2016), Article ID 173, 21 pages. 
DOI 10.1186/s13661-016-0679-3 | 
MR 3550421 | 
Zbl 1350.35129[23] Lions, J. L.: 
Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969), French. 
MR 0259693 | 
Zbl 0189.40603[24] Long, N. T., Ha, H. H., Ngoc, L. T. P., Triet, N. A.: 
Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Commun. Pure Appl. Anal. 19 (2020), 455-492. 
DOI 10.3934/cpaa.2020023 | 
MR 4025953 | 
Zbl 1437.35468[25] Medeiros, L. A.: 
On some nonlinear perturbation of Kirchhoff-Carrier operator. Comput. Appl. Math. 13 (1994), 225-233. 
MR 1326759 | 
Zbl 0821.35100[27] Ngoc, L. T. P., Nhan, N. H., Nam, B. D., Long, N. T.: 
Existence and exponential decay of the Dirichlet problem for a nonlinear wave equation with the Balakrishnan-Taylor term. Lith. Math. J. 60 (2020), 225-247. 
DOI 10.1007/s10986-020-09469-7 | 
MR 4110669 | 
Zbl 1442.35243[30] Showalter, R. E.: 
Hilbert space methods for partial differential equations. Electronic Journal of Differential Equations. Monograph 1. Southwest Texas State University, San Marcos (1994). 
MR 1302484 | 
Zbl 0991.35001[32] Tatar, N.-e., Zaraï, A.: 
On a Kirchhoff equation with Balakrishnan-Taylor damping and source term. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 18 (2011), 615-627. 
MR 2884753 | 
Zbl 1264.35244[35] Zaraï, A., Tatar, N.-e.: 
Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping. Arch. Math., Brno 46 (2010), 157-176. 
MR 2735903 | 
Zbl 1240.35330