Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
symmetric algebra; syzygy; dimension; depth
Summary:
Let $(R,\frak {m})$ be a standard graded $K$-algebra over a field $K$. Then $R$ can be written as $S/I$, where $I\subseteq (x_1,\ldots ,x_n)^2$ is a graded ideal of a polynomial ring $S=K[x_1,\ldots ,x_n]$. Assume that $n\geq 3$ and $I$ is a strongly stable monomial ideal. We study the symmetric algebra ${\rm Sym}_R({\rm Syz}_1(\frak {m}))$ of the first syzygy module ${\rm Syz}_1(\frak {m})$ of $\frak {m}$. When the minimal generators of $I$ are all of degree 2, the dimension of ${\rm Sym}_R({\rm Syz}_1(\frak {m}))$ is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.\looseness -1
References:
[1] Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts in Mathematics 150. Springer, New York (1995). DOI 10.1007/978-1-4612-5350-1 | MR 1322960 | Zbl 0819.13001
[2] Eliahou, S., Kervaire, M.: Minimal resolution of some monomial ideals. J. Algebra 129 (1990), 1-25. DOI 10.1016/0021-8693(90)90237-I | MR 1037391 | Zbl 0701.13006
[3] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics 260. Springer, London (2011). DOI 10.1007/978-0-85729-106-6 | MR 2724673 | Zbl 1206.13001
[4] Herzog, J., Restuccia, G., Rinaldo, G.: On the depth and regularity of the symmetric algebra. Beitr. Algebra Geom. 47 (2006), 29-51. MR 2245654 | Zbl 1101.13039
[5] Herzog, J., Restuccia, G., Tang, Z.: $s$-sequences and symmetric algebras. Manuscr. Math. 104 (2001), 479-501. DOI 10.1007/s002290170022 | MR 1836109 | Zbl 1058.13011
[6] Herzog, J., Tang, Z., Zarzuela, S.: Symmetric and Rees algebras of Koszul cycles and their Gröbner bases. Manuscr. Math. 112 (2003), 489-509. DOI 10.1007/s00229-003-0420-2 | MR 2064656 | Zbl 1088.13518
[7] Restuccia, G., Tang, Z., Utano, R.: On the symmetric algebra of the first syzygy of a graded maximal ideal. Commun. Algebra 44 (2016), 1110-1118. DOI 10.1080/00927872.2014.999929 | MR 3463132 | Zbl 1337.13010
[8] Restuccia, G., Tang, Z., Utano, R.: On invariants of certain symmetric algebras. Ann. Mat. Pura Appl. 197 (2018), 1923-1935. DOI 10.1007/s10231-018-0756-6 | MR 3855419 | Zbl 1410.13011
[9] Tang, Z.: On certain monomial sequences. J. Algebra 282 (2004), 831-842. DOI 10.1016/j.jalgebra.2004.08.027 | MR 2101086 | Zbl 1147.13304
[10] Villarreal, R. H.: Monomial Algebras. Pure and Applied Mathematics, Marcel Dekker 238. Marcel Dekker, New York (2001). DOI 10.1201/9780824746193 | MR 1800904 | Zbl 1002.13010
Partner of
EuDML logo