| Title:
             | 
Weak $n$-injective and weak $n$-fat modules (English) | 
| Author:
             | 
Arunachalam, Umamaheswaran | 
| Author:
             | 
Raja, Saravanan | 
| Author:
             | 
Chelliah, Selvaraj | 
| Author:
             | 
Annadevasahaya Mani, Joseph Kennedy | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
72 | 
| Issue:
             | 
3 | 
| Year:
             | 
2022 | 
| Pages:
             | 
913-925 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We introduce and study the concepts of weak $n$-injective and weak $n$-flat modules in terms of super finitely presented modules whose projective dimension is at most $n$, which generalize the $n$-FP-injective and $n$-flat modules. We show that the class of all weak $n$-injective $R$-modules is injectively resolving, whereas that of weak $n$-flat right \hbox {$R$-modules} is projectively resolving and the class of weak $n$-injective (or weak $n$-flat) modules together with its left (or right) orthogonal class forms a hereditary (or perfect hereditary) cotorsion theory.\looseness +1 (English) | 
| Keyword:
             | 
weak injective module | 
| Keyword:
             | 
weak flat module | 
| Keyword:
             | 
weak $n$-injective module | 
| Keyword:
             | 
weak $n$-flat module | 
| Keyword:
             | 
cotorsion theory | 
| MSC:
             | 
16D40 | 
| MSC:
             | 
16D50 | 
| MSC:
             | 
16E10 | 
| MSC:
             | 
16E30 | 
| idZBL:
             | 
Zbl 07584108 | 
| idMR:
             | 
MR4467948 | 
| DOI:
             | 
10.21136/CMJ.2022.0225-21 | 
| . | 
| Date available:
             | 
2022-08-22T08:26:36Z | 
| Last updated:
             | 
2024-10-04 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/150623 | 
| . | 
| Reference:
             | 
[1] Bravo, D., Gillespie, J., Hovey, M.: The stable module category of a general ring.Available at https://arxiv.org/abs/1405.5768 (2014), 38 pages 	. | 
| Reference:
             | 
[2] Chen, J., Ding, N.: On $n$-coherent rings.Commun. Algebra 24 (1996), 3211-3216 \99999DOI99999 10.1080/00927879608825742 	. Zbl 0877.16010, MR 1402554 | 
| Reference:
             | 
[3] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics 30. Walter De Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662 | 
| Reference:
             | 
[4] Gao, Z., Huang, Z.: Weak injective covers and dimension of modules.Acta Math. Hung. 147 (2015), 135-157 \99999DOI99999 10.1007/s10474-015-0540-7 	. Zbl 1363.18011, MR 3391518 | 
| Reference:
             | 
[5] Gao, Z., Wang, F.: All Gorenstein hereditary rings are coherent.J. Algebra Appl. 13 (2014), Article ID 1350140, 5 pages \99999DOI99999 10.1142/S0219498813501405 	. Zbl 1300.13014, MR 3153875 | 
| Reference:
             | 
[6] Gao, Z., Wang, F.: Weak injective and weak flat modules.Commun. Algebra 43 (2015), 3857-3868 \99999DOI99999 10.1080/00927872.2014.924128 	 	 	 	 	. Zbl 1334.16008, MR 3360853 | 
| Reference:
             | 
[7] Lee, S. B.: $n$-coherent rings.Commun. Algebra 30 (2002), 1119-1126 \99999DOI99999 10.1080/00927870209342374 	. Zbl 1022.16001, MR 1892593 | 
| Reference:
             | 
[8] Pérez, M. A.: Introduction to Abelian Model Structures and Gorenstein Homological Dimensions.Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2016). Zbl 1350.13003, MR 3588011, 10.1201/9781315370552 | 
| Reference:
             | 
[9] Stenström, B.: Coherent rings and FP-injective modules.J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329 \99999DOI99999 10.1112/jlms/s2-2.2.323 	. Zbl 0194.06602, MR 258888 | 
| Reference:
             | 
[10] Yang, X., Liu, Z.: $n$-flat and $n$-FP-injective modules.Czech. Math. J. 61 (2011), 359-369. Zbl 1249.13011, MR 2905409, 10.1007/s10587-011-0080-4 | 
| . |