[2] Alías, L.J., Brasil Jr., A., Perdomo, O.: 
A characterization of quadric constant mean curvature hypersurfaces of spheres. J. Geom. Anal. 18 (2008), 687–703. 
DOI 10.1007/s12220-008-9029-8 | 
MR 2420759 
[3] Alías, L.J., Caminha, A., do Nascimento, F.Y.: 
A maximum principle related to volume growth and applications. Ann. Mat. Pura Appl. 200 (2021), 1637–1650. 
MR 4278219 
[8] Aquino, C.P., de Lima, H.F., dos Santos, F.R.: 
On the quadric CMC spacelike hypersurfaces in Lorentzian space forms. Colloq. Math. 145 (2016), 89–98. 
MR 3514262 
[9] Aquino, C.P., de Lima, H.F., Velásquez, M.A.L.: 
On the geometry of complete spacelike hypersurfaces in the anti-de Sitter space. Geom. Dedicata 174 (2015), 13–23. 
DOI 10.1007/s10711-014-0002-3 | 
MR 3303038 
[10] Beem, J.K., Ehrlich, P.E., Easley, K.L.: 
Global Lorentzian Geometry. CRC Press, New York, 1996, Second Edition. 
MR 1384756 
[11] Galloway, G.J., Senovilla, J.M.M.: 
Singularity theorems based on trapped submanifolds of arbitrary co-dimension. Classical Quantum Gravity 27 (15) (2010), 10pp., 152002. 
DOI 10.1088/0264-9381/27/15/152002 | 
MR 2659235 
[12] Hawking, S.W., Ellis, G.F.R.: 
The large scale structure of spacetime. Cambridge University Press, London-New York, 1973. 
MR 0424186 
[13] Montiel, S.: 
Uniqueness of spacelike hypersurface of constant mean curvature in foliated spacetimes. Math. Ann. 314 (1999), 529–553. 
DOI 10.1007/s002080050306 | 
MR 1704548 
[14] O’Neill, B.: 
Semi-Riemannian Geometry, with Applications to Relativity. Academic Press, New York, 1983. 
MR 0719023 
[16] Senovilla, J.M.M.: Singularity theorems in general relativity: Achievements and open questions. Einstein and the Changing Worldviews of Physics (Christoph Lehner, Jürgen Renn, Schemmel, Matthias, eds.), Birkhäuser Boston, 2012, pp. 305–316.