| Title:
             | 
Bartz-Marlewski equation with generalized Lucas components (English) | 
| Author:
             | 
Hashim, Hayder R. | 
| Language:
             | 
English | 
| Journal:
             | 
Archivum Mathematicum | 
| ISSN:
             | 
0044-8753 (print) | 
| ISSN:
             | 
1212-5059 (online) | 
| Volume:
             | 
58 | 
| Issue:
             | 
3 | 
| Year:
             | 
2022 | 
| Pages:
             | 
189-197 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Let $\lbrace U_n\rbrace =\lbrace U_n(P,Q)\rbrace $ and $\lbrace V_n\rbrace =\lbrace V_n(P,Q)\rbrace $ be the Lucas sequences of the first and second kind respectively at the parameters $P \ge 1$ and $Q \in \lbrace -1, 1\rbrace $. In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation \[ x^2-3xy+y^2+x=0\,, \] where $(x,y)=(U_i, U_j)$ or $(V_i, V_j)$ with $i$, $ j \ge 1$. Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters. (English) | 
| Keyword:
             | 
Lucas sequences | 
| Keyword:
             | 
Diophantine equation | 
| MSC:
             | 
11B39 | 
| MSC:
             | 
11D45 | 
| idZBL:
             | 
Zbl 07584090 | 
| idMR:
             | 
MR4483053 | 
| DOI:
             | 
10.5817/AM2022-3-189 | 
| . | 
| Date available:
             | 
2022-09-01T10:21:56Z | 
| Last updated:
             | 
2023-03-13 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/150664 | 
| . | 
| Reference:
             | 
[1] Bartz, E., Marlewski, A.: A computer search of solutions of a certain Diophantine equation.Pro Dialog (in Polish, English summary) 10 (2000), 47–57. | 
| Reference:
             | 
[2] Hashim, H.R., Tengely, Sz.: Solutions of a generalized Markoff equation in Fibonacci numbers.Math. Slovaca 70 (2020), no. 5, 1069–1078. DOI: http://dx.doi.org/https://doi.org/10.1515/ms-2017-0414 10.1515/ms-2017-0414 10.1515/ms-2017-0414 10.1515/ms-2017-0414 10.1515/ms-2017-0414 | 
| Reference:
             | 
[3] Hashim, H.R., Tengely, Sz., Szalay, L.: Markoff-Rosenberger triples and generalized Lucas sequences.Period. Math. Hung. (2021). MR 4469427 | 
| Reference:
             | 
[4] Kafle, B., Srinivasan, A., Togbé, A.: Markoff equation with Pell component.Fibonacci Quart. 58 (2020), no. 3, 226–230. MR 4135896 | 
| Reference:
             | 
[5] Koshy, T.: Polynomial extensions of two Gibonacci delights and their graph-theoretic confirmations.Math. Sci. 43 (2018), no. 2, 96–108 (English). MR 3888119 | 
| Reference:
             | 
[6] Luca, F., Srinivasan, A.: Markov equation with Fibonacci components..Fibonacci Q. 56 (2018), no. 2, 126–129 (English). MR 3813331 | 
| Reference:
             | 
[7] Marlewski, A., Zarzycki, P.: Infinitely many positive solutions of the Diophantine equation $x^{2} - kxy + y^{2} + x = 0$.Comput. Math. Appl. 47 (2004), no. 1, 115–121 (English). DOI: http://dx.doi.org/10.1016/S0898-1221(04)90010-7 MR 2062730, 10.1016/S0898-1221(04)90010-7 | 
| Reference:
             | 
[8] Ribenboim, P.: My numbers, my friends. Popular lectures on number theory.New York, NY: Springer, 2000 (English). MR 1761897 | 
| Reference:
             | 
[9] Srinivasan, A.: The Markoff-Fibonacci numbers.Fibonacci Q. 58 (2020), no. 5, 222–228 (English). MR 4202995 | 
| Reference:
             | 
[10] Stein, W.thinspaceA., , : Sage Mathematics Software (Version 9.0).The Sage Development Team, 2020, http://www.sagemath.org. | 
| . |