Previous |  Up |  Next

Article

Title: Totally Brown subsets of the Golomb space and the Kirch space (English)
Author: Alberto-Domínguez, José del Carmen
Author: Acosta, Gerardo
Author: Delgadillo-Piñón, Gerardo
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 2
Year: 2022
Pages: 189-219
Summary lang: English
.
Category: math
.
Summary: A topological space $X$ is totally Brown if for each $n \in \mathbb{N} \setminus \{1\}$ and every nonempty open subsets $U_1,U_2,\ldots,U_n$ of $X$ we have ${\rm cl}_X(U_1) \cap {\rm cl}_X(U_2) \cap \cdots \cap {\rm cl}_X(U_n) \ne \emptyset$. Totally Brown spaces are connected. In this paper we consider the Golomb topology $\tau_G$ on the set $\mathbb{N}$ of natural numbers, as well as the Kirch topology $\tau_K$ on $\mathbb{N}$. Then we examine subsets of these spaces which are totally Brown. Among other results, we characterize the arithmetic progressions which are either totally Brown or totally separated in $(\mathbb{N},\tau_G)$. We also show that $(\mathbb{N},\tau_G)$ and $(\mathbb{N},\tau_K)$ are aposyndetic. Our results generalize properties obtained by A. M. Kirch in 1969 and by P. Szczuka in 2010, 2013 and 2015. (English)
Keyword: arithmetic progression
Keyword: Golomb topology
Keyword: Kirch topology
Keyword: totally Brown space
Keyword: totally separated space
MSC: 11A41
MSC: 11B05
MSC: 11B25
MSC: 54A05
MSC: 54D05
MSC: 54D10
idZBL: Zbl 07613030
idMR: MR4506132
DOI: 10.14712/1213-7243.2022.017
.
Date available: 2022-11-02T09:16:56Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151085
.
Reference: [1] Alberto-Domínguez J. C., Acosta G., Madriz-Mendoza M.: The common division topology on $\mathbb{N}$.accepted in Comment. Math. Univ. Carolin.
Reference: [2] Banakh T., Mioduszewski J., Turek S.: On continuous self-maps and homeomorphisms of the Golomb space.Comment. Math. Univ. Carolin. 59 (2018), no. 4, 423–442.
Reference: [3] Banakh T., Stelmakh Y., Turek S.: The Kirch space is topologically rigid.Topology Appl. 304 (2021), Paper No. 107782, 16 pages. MR 4339625, 10.1016/j.topol.2021.107782
Reference: [4] Bing R. H.: A connected countable Hausdorff space.Proc. Amer. Math. Soc. 4 (1953), 474. MR 0060806, 10.1090/S0002-9939-1953-0060806-9
Reference: [5] Clark P. L., Lebowitz-Lockard N., Pollack P.: A note on Golomb topologies.Quaest. Math. 42 (2019), no. 1, 73–86. MR 3905659, 10.2989/16073606.2018.1438533
Reference: [6] Dontchev J.: On superconnected spaces.Serdica 20 (1994), no. 3–4, 345–350. MR 1333356
Reference: [7] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [8] Fine B., Rosenberger G.: Number Theory. An Introduction via the Density of Primes.Birkhäuser/Springer, Cham, 2016. MR 3559913
Reference: [9] Furstenberg H.: On the infinitude of primes.Amer. Math. Monthly 62 (1955), 353. MR 0068566, 10.2307/2307043
Reference: [10] Golomb S. W.: A connected topology for the integers.Amer. Math. Monthly 66 (1959), 663–665. MR 0107622, 10.1080/00029890.1959.11989385
Reference: [11] Golomb S. W.: Arithmetica topologica.General Topology and Its Relations to Modern Analysis and Algebra, Proc. Sympos., Prague, 1961, Academic Press, New York, Publ. House Czech. Acad. Sci., Praha, 1962, 179–186 (Italian). MR 0154249
Reference: [12] Jones F. B.: Aposyndetic continua and certain boundary problems.Amer. J. Math. 63 (1941), 545–553. MR 0004771, 10.2307/2371367
Reference: [13] Jones G. A., Jones J. M.: Elementary Number Theory.Springer Undergraduate Mathematics Series, Springer, London, 1998. MR 1610533
Reference: [14] Kirch A. M.: A countable, connected, locally connected Hausdorff space.Amer. Math. Monthly 76 (1969), 169–171. MR 0239563, 10.1080/00029890.1969.12000163
Reference: [15] Nanda S., Panda H. K.: The fundamental group of principal superconnected spaces.Rend. Mat. (6) 9 (1976), no. 4, 657–664. MR 0434295
Reference: [16] Rizza G. B.: A topology for the set of nonnegative integers.Riv. Mat. Univ. Parma (5) 2 1993, 179–185. MR 1276050
Reference: [17] Steen L. A., Seebach J. A., Jr.: Counterexamples in Topology.Dover Publications, Mineola, New York, 1995. Zbl 0386.54001, MR 1382863
Reference: [18] Szczuka P.: The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies.Demonstratio Math. 43 (2010), no. 4, 899–909. MR 2761648, 10.1515/dema-2010-0416
Reference: [19] Szczuka P.: Connections between connected topological spaces on the set of positive integers.Cent. Eur. J. Math. 11 (2013), no. 5, 876–881. MR 3032336
Reference: [20] Szczuka P.: The Darboux property for polynomials in Golomb's and Kirch's topologies.Demonstratio Math. 46 (2013), no. 2, 429–435. MR 3098036
Reference: [21] Szczuka P.: Regular open arithmetic progressions in connected topological spaces on the set of positive integers.Glas. Mat. Ser. III 49(69) (2014), no. 1, 13–23. MR 3224474, 10.3336/gm.49.1.02
Reference: [22] Szczuka P.: The closures of arithmetic progressions in the common division topology on the set of positive integers.Cent. Eur. J. Math. 12 (2014), no. 7, 1008–1014. MR 3188461
Reference: [23] Szczuka P.: The closures of arithmetic progressions in Kirch's topology on the set of positive integers.Int. J. Number Theory 11 (2015), no. 3, 673–682. MR 3327837, 10.1142/S1793042115500360
Reference: [24] Szyszkowska P., Szyszkowski M.: Properties of the common division topology on the set of positive integers.J. Ramanujan Math. Soc. 33 (2018), no. 1, 91–98. MR 3772612
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo