[1] Alattas, K. A., Mostafaee, J., Alanazi, A. K., Mobayen, S., Vu, M. T., Zhilenkov, A., Abo-Dief, H. M.: 
Nonsingular terminal sliding mode control based on adaptive barrier function for nth-order perturbed nonlinear systems. Mathematics 10 (2022), 1, 43. 
DOI  
[2] Alwi, H., Edwards, C.: 
An adaptive sliding mode differentiator for actuator oscillatory failure case reconstruction. Automatica 49 (2013), 2, 642-651. 
DOI  | 
MR 3004735 
[3] Ang, K. H., Chong, G., Li, Y.: 
PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13 (2005), 4, 559-576. 
DOI  
[4] Ashwood, P. F.: 
An altitude test facility for large turbofan engines. J. Aircr. 10 (1973), 8, 468-474. 
DOI  
[5] Barbot, J.-P., Levant, A., Livne, M., Lunz, D.: 
Discrete differentiators based on sliding modes. Automatica 112 (2020). 
DOI  | 
MR 4024634 
[6] Castillo-Toledo, B., Gennaro, S. D., López-Cuevas, A.: 
Tracking through singularities using sliding mode differentiators. Kybernetika 51 (2015), 1, 20-35. 
DOI  | 
MR 3333831 
[7] Deza, F., Busvelle, E., Gauthier, J. P., Rakotopara, D.: 
High gain estimation for nonlinear systems. Syst. Control Lett. 18 (1992), 4, 295-299. 
DOI  | 
MR 1158656 
[8] Ghanes, M., Barbot, J.-P., Fridman, L., Levant, A., Boisliveau, R.: 
A new varying-gain-exponent-based differentiator/observer: An efficient balance between linear and sliding-mode algorithms. IEEE Trans. Automat. Control 65 (2020), 12, 5407-5414. 
DOI  | 
MR 4184867 
[11] Han, J.: 
From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56 (2009), 3, 900-906. 
DOI  
[12] Hu, J. P.: 
On robust consensus of multi-agent systems with communication delays. Kybernetika 45 (2009), 5, 768-784. 
DOI  | 
MR 2599111 | 
Zbl 1190.93003 
[13] Hu, J. P., Chen, G. R., Li, H. X.: 
Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays. Kybernetika 47 (2011), 4, 630-643. 
MR 2884865 | 
Zbl 1227.93008 
[14] Ibrir, S.: 
Linear time-derivative trackers. Automatica 40 (2004), 3, 397-405. 
DOI  | 
MR 2145267 
[15] Kilic, Dogushan, Brem, Benjamin, T., Klein, Felix, al., et: 
Characterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry: aircraft turbine engines. Environ. Sci. Technol. 51 (2017), 7, 3621-3629. 
DOI  
[16] Levant, A.: 
Robust exact differentiation via sliding mode technique. Automatica 34 (1998), 3, 379-384. 
DOI  | 
MR 1623077 | 
Zbl 0915.93013 
[17] Levant, A., Yu, X.: 
Sliding-mode-based differentiation and filtering. IEEE Trans. Automat. Contr. 63 (2018), 9, 3061-3067. 
DOI  | 
MR 3849410 
[18] Liu, G., Li, J., Zheng, S., Chen, Q., Liu, H.: 
Suppression of Synchronous current using double input improved adaptive notch filter algorithm. IEEE Trans. Ind. Electron. 67 (2020), 10, 8599-8607. 
DOI  
[19] Meller, M.: 
Frequency guided generalized adaptive notch filtering-tracking analysis and optimization. IEEE Trans. Signal Process. 63 (2015), 22, 6003-6012. 
DOI  | 
MR 3411373 
[20] Nasiri, M., Mobayen, S., Arzani, A.: 
PID-type terminal sliding mode control for permanent magnet synchronous generator based enhanced wind energy conversion systems. CSEE J. Power Energy Syst. 
DOI  
[21] Oliveira, T. R., Rodrigues, V. H. P., Fridman, L.: 
Generalized model reference adaptive control by means of global HOSM differentiators. IEEE Trans. Automat. Control 64 (2019), 5, 2053-2060. 
DOI  | 
MR 3951047 
[22] Orlov, Y., Aoustin, Y., Chevallereau, C.: 
Finite time stabilization of a perturbed double integrator-part I: Continuous sliding mode-based output feedback synthesis. IEEE Trans. Automat. Control 56 (2011), 3, 614-618. 
DOI  | 
MR 2799077 
[23] Rinaldi, G., Menon, P. P., Edwards, C., Ferrara, A., Shtessel, Y.: 
Adaptive dual-layer super-twisting sliding mode observers to reconstruct and mitigate disturbances and communication attacks in power networks. Automatica 129 (2021), p.109656. 
DOI  | 
MR 4253862 
[24] Su, Y. X., Zheng, C. H., Mueller, P. C., Duan, B. Y.: 
A simple improved velocity estimation for low-speed regions based on position measurements only. IEEE Trans. Control Syst. Technol. 14 (2006), 5, 937-942. 
DOI  
[25] Wang, X., Chen, Z., Yang, G.: 
Finite-time-convergent differentiator based on singular perturbation technique. IEEE Trans. Automat. Control 52 (2007), 9, 1731-1737. 
DOI  | 
MR 2352454 
[26] Wang, F., He, L.: 
FPGA-based predictive speed control for PMSM system using integral sliding-mode disturbance observer. IEEE Trans. Ind. Electron. 68 (2021), 2, 972-981. 
DOI  
[27] Wang, J., Xie, Y., Y, Yu, Xiao, G., Zhang, L., Dan, Z., al., et: A practical parameter tuning algorithm for super-twisting algorithm based differentiator and its application in altitude ground test facility. ISA Trans., under review.
[28] Wang, J., Zhang, H., Xiao, G., Dan, Z., Zhang, S., Xie, Y.: A comparison study of tracking differentiator and robust exact differentiator. In: 2020 China Automation Conference 2020, pp. 1359-1364.
[29] Wu, F., Gao, L., Wu, X., Feng, X., Leng, L., Li, Y.: Aerodynamic modeling and transient performance improvement of a free jet altitude test facility. In: International Conference on Artificial Intelligence and Security, Springer, Singapore 2020, pp. 618-630.
[30] Wu, W., Sun, H., Cai, Y., Jiang, S., Xiong, J.: 
Tracking multiple maneuvering targets hidden in the DBZ based on the MM-GLMB filter. IEEE Trans. Signal Process. 68 (2020), 2912-2924. 
DOI  | 
MR 4144921 
[31] Yang, H., Cheng, L., Zhang, J., Xia, Y.: 
Leader-follower trajectory control for quadrotors via tracking differentiators and disturbance observers. IEEE Trans Syst Man Cybern.: Syst. 51 (2021), 1, 601-609. 
DOI  
[32] Yan, Y., Yu, S., Yu, X.: 
Euler's discretization effect on a sliding-mode control system with supertwisting algorithm. IEEE Trans. Automat. Control 66 (2021), 6, 2817-2824. 
DOI  | 
MR 4265118 
[33] Zhang, H., Xiao, G., Yun, X., Xie, Y.: 
On convergence performance of discrete-time optimal control based tracking differentiator. IEEE Trans. Ind. Electron. 68 (2021), 4, 3359-3369. 
DOI  
[34] Zhang, H., Xie, Y., Xiao, G., Zhai, C., Long, Z.: 
A simple discrete-time tracking differentiator and its application to speed and position detection system for a maglev train. IEEE Trans. Control Syst. Technol. 27 (2019), 4, 1728-1734. 
DOI  
[35] Zhao, L., Cheng, H., Zhang, J., Xia, Y.: 
Angle attitude control for a 2-DOF parallel mechanism of PMAs using tracking differentiators. IEEE Trans. Ind. Electron. 66 (2019), 11, 8659-8669. 
DOI