| Title:
|
The category of compactifications and its coreflections (English) |
| Author:
|
Hager, Anthony W. |
| Author:
|
Wynne, Brian |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
63 |
| Issue:
|
3 |
| Year:
|
2022 |
| Pages:
|
365-378 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
We define ``the category of compactifications'', which is denoted {\bf{CM}}, and consider its family of coreflections, denoted {\bf{corCM}}. We show that {\bf{corCM}} is a complete lattice with bottom the identity and top an interpretation of the Čech--Stone $\beta$. A $c \in${\bf{corCM}} implies the assignment to each locally compact, noncompact $Y$ a compactification minimum for membership in the ``object-range'' of $c$. We describe the minimum proper compactifications of locally compact, noncompact spaces, show that these generate the atoms in {\bf{corCM}} (thus {\bf{corCM}} is not a set), show that any $c \in${\bf{corCM}} not the identity is above an atom, and that $\beta$ is not the supremum of atoms. (English) |
| Keyword:
|
compactification |
| Keyword:
|
coreflection |
| Keyword:
|
atom in a lattice |
| MSC:
|
06B23 |
| MSC:
|
18A40 |
| MSC:
|
54B30 |
| MSC:
|
54C10 |
| MSC:
|
54D35 |
| idZBL:
|
Zbl 07655806 |
| idMR:
|
MR4542795 |
| DOI:
|
10.14712/1213-7243.2022.024 |
| . |
| Date available:
|
2023-02-01T12:11:11Z |
| Last updated:
|
2024-10-04 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151482 |
| . |
| Reference:
|
[1] Birkhoff G.: Lattice Theory.American Mathematical Society Colloquium Publications, 25, American Mathematical Society, Providence, 1979. Zbl 0537.06001, MR 0598630 |
| Reference:
|
[2] Carrera R., Hager A. W.: A classification of hull operators in archimedean lattice-ordered groups with unit.Categ. Gen. Algebr. Struct. Appl. 13 (2020), no. 1, 83–103. MR 4162033 |
| Reference:
|
[3] Chandler R. E.: Hausdorff Compactifications.Lecture Notes in Pure and Applied Mathematics, 23, Marcel Dekker, New York, 1976. MR 0515002 |
| Reference:
|
[4] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
| Reference:
|
[5] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics, 43, Springer, New York, 1976. Zbl 0327.46040, MR 0407579 |
| Reference:
|
[6] Hager A. W.: Minimal covers of topological spaces.Ann. New York Acad. Sci., 552, New York Acad. Sci., New York, 1989, pages 44–59. MR 1020773 |
| Reference:
|
[7] Hager A. W., Martinez J.: Hulls for various kinds of $\alpha$-completeness in Archimedean lattice-ordered groups.Order 16 (1999), no. 1, 89–103. MR 1740743, 10.1023/A:1006323031986 |
| Reference:
|
[8] Hager A. W., Wynne B.: Atoms in the lattice of covering operators in compact Hausdorff spaces.Topology Appl. 289 (2021), Paper No. 107402, 9 pages. MR 4192355, 10.1016/j.topol.2020.107402 |
| Reference:
|
[9] Herrlich H.: Topologische Reflexionen und Coreflexionen.Lecture Notes in Mathematics, 78, Springer, Berlin, 1968 (German). Zbl 0182.25302, MR 0256332 |
| Reference:
|
[10] Herrlich H., Strecker G. E.: Category Theory.Sigma Series in Pure Mathematics, 1, Heldermann Verlag, Berlin, 1979. Zbl 1125.18300, MR 0571016 |
| Reference:
|
[11] Magill K. D., Jr.: $N$-point compactifications.Amer. Math. Monthly 72 (1965), 1075–1081. MR 0185572, 10.1080/00029890.1965.11970675 |
| Reference:
|
[12] Porter J. R., Woods R. G.: Extensions and Absolutes of Hausdorff Spaces.Springer, New York, 1988. Zbl 0652.54016, MR 0918341 |
| . |