Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
quasicontinuous space; hypercontinuous lattice; $SI$-continuous space; locally hypercompact space; meet continuous space
Summary:
We lift the notion of quasicontinuous posets to the topology context, called quasicontinuous spaces, and further study such spaces. The main results are: (1) A $T_{0}$ space $(X,\tau)$ is a quasicontinuous space if and only if $SI(X)$ is locally hypercompact if and only if $(\tau_{SI},\subseteq)$ is a hypercontinuous lattice; (2) a $T_{0}$ space $X$ is an $SI$-continuous space if and only if $X$ is a meet continuous and quasicontinuous space; (3) if a $C$-space $X$ is a well-filtered poset under its specialization order, then $X$ is a quasicontinuous space if and only if it is a quasicontinuous domain under the specialization order; (4) there exists an adjunction between the category of quasicontinuous domains and the category of quasicontinuous spaces which are well-filtered posets under their specialization orders.
References:
[1] Adámek J., Herrlich H., Strecker G. E.: Abstract and Concrete Categories. The Joy of Cats, Pure and Applied Mathematics, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1990. MR 1051419
[2] Andradi H., Ho W. K.: On a new convergence class in sup-sober spaces. available at arXiv:1709.03269v1 [cs.LO] (2017), 13 pages.
[3] Andradi H., Shen C., Ho W. K., Zhao D.: A new convergence inducing the $SI$-topology. Filomat 32 (2018), no. 17, 6017–6029. DOI 10.2298/FIL1817017A | MR 3899335
[4] Bandelt H.-J., Erné M.: The category of $Z$-continuous posets. J. Pure and Appl. Algebra 30 (1983), no. 3, 219–226. DOI 10.1016/0022-4049(83)90057-9 | MR 0724033
[5] Baranga A.: $Z$-continuous posets. Discrete Math. 152 (1996), no. 1–3, 33–45. DOI 10.1016/0012-365X(94)00307-5 | MR 1388630
[6] Engelking R.: General Topology. Mathematical Monographs, 60, PWN—Polish Scientific Publishers, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[7] Erné M.: The ABC of order and topology. Category Theory at Work, Bremen, 1990, Res. Exp. Math., 18, Heldermann, Berlin, 1991, pages 57–83. MR 1147919
[8] Erné M.: $Z$-continuous posets and their topological manifestation. Applications of ordered sets in computer science, Braunschweig, 1996, Appl. Categ. Structures 7 (1999), no. 1–2, 31–70. DOI 10.1023/A:1008657800278 | MR 1714179
[9] Erné M.: Infinite distributive laws versus local connectedness and compactness properties. Topology Appl. 156 (2009), no. 12, 2054–2069. DOI 10.1016/j.topol.2009.03.029 | MR 2532134
[10] Gierz G., Hofmann K. H., Keimel K., Lawson J. D., Mislove M., Scott D. S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and Its Applications, 93, Cambridge University Press, Cambridge, 2003. MR 1975381 | Zbl 1088.06001
[11] Gierz G., Lawson J. D.: Generalized continuous and hypercontinuous lattices. Rocky Mountain J. Math. 11 (1981), no. 2, 271–296. DOI 10.1216/RMJ-1981-11-2-271 | MR 0619676
[12] Gierz G., Lawson J. D., Stralka A.: Quasicontinuous posets. Houston J. Math. 9 (1983), no. 2, 191–208. MR 0703268
[13] Goubault-Larrecq J.: Non-Hausdorff Topology and Domain Theory. New Mathematical Monographs, 22, Cambridge University Press, Cambridge, 2013. MR 3086734
[14] Heckmann R., Keimel K.: Quasicontinuous domains and the Smyth powerdomain. Proc. of the Twenty-Ninth Conf. Mathematical Foundations of Programming Semantics, MFPS XXIX, Electron. Notes Theor. Comput. Sci., 298, Elsevier, Amsterdam, 2013, pages 215–232. MR 3138523
[15] Kou H., Liu Y.-M., Luo M.-K.: On meet-continuous dcpos. Domain Theory, Logic and Computation, Semant. Struct. Comput., 3, Kluwer Acad. Publ., Dordrecht, 2003, pages 137–149. MR 2068007
[16] Lawson J. D.: $T_{0}$-spaces and pointwise convergence. Topology Appl. 21 (1985), no. 1, 73–76. DOI 10.1016/0166-8641(85)90059-8 | MR 0808725
[17] Lu J., Zhao B., Wang K.: $SI$-continuous spaces and continuous posets. Topology Appl. 264 (2019), 313–321. DOI 10.1016/j.topol.2019.06.032 | MR 3975753
[18] Mao X., Xu L.: Quasicontinuity of posets via Scott topology and sobrification. Order 23 (2006), no. 4, 359–369. DOI 10.1007/s11083-007-9054-4 | MR 2309700
[19] Mao X., Xu L.: Meet continuity properties of posets. Theoret. Comput. Sci. 410 (2009), no. 42, 4234–4240. DOI 10.1016/j.tcs.2009.06.017 | MR 2561483
[20] Venugopalan P.: Quasicontinuous posets. Semigroup Forum 41 (1990), no. 2, 193–200. DOI 10.1007/BF02573390 | MR 1057590
[21] Wright J. B., Wagner E. G., Thatcher J. W.: A uniform approach to inductive posets and inductive closure. Theoret. Comput. Sci. 7 (1978), no. 1, 57–77. DOI 10.1016/0304-3975(78)90040-3 | MR 0480224
[22] Zhao D., Ho W. K: On topologies defined by irreducible sets. J. Log. Algebr. Methods Program. 84 (2015), no. 1, 185–195. DOI 10.1016/j.jlamp.2014.10.003 | MR 3292951
Partner of
EuDML logo