Previous |  Up |  Next

Article

Keywords:
autonomous UAV; interconnected system; neuro-sliding mode control; payload transportation
Summary:
In this study, a generalized system model is derived for interconnected quadrotor UAVs carrying a suspended payload. Moreover, a novel neural network-based sliding mode controller (NSMC) for the system is suggested. While the proposed controller uses the advantages of the robust structure of sliding mode controller (SMC) for the nonlinear system, the neural network component eliminates the chattering effects in the control signals of the SMC and increases the efficiency of the SMC against time-varying dynamic uncertainties. After the controller design is carried out, a comprehensive stability analysis based on Lyapunov theory is given to assure the asymptotic stability of the system. Finally, extensive numerical simulations with detailed comparisons are used to verify the effectiveness of the proposed controller.
References:
[1] Altug, E., Ostrowski, J. P., Taylor, C. J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Rob. Res. 24 (2005), 5, 329-341. DOI 
[2] Bingöl, Ö., Güzey, H. M.: Neuro sliding mode control of quadrotor UAVs carrying suspended payload. Adv. Robot. 35 (2021), 3-4, 255-266. DOI 
[3] Bingöl, Ö., Güzey, H.-M.: Finite-time neuro-sliding-mode controller design for quadrotor uavs carrying suspended payload. Drones 6 (2022), 10, 311. DOI 
[4] Bingöl, \"{0}., Güzey, H. M.: Fixed-time neuro-sliding mode controller design for quadrotor uav transporting a suspended payload. European J. Control 73 (2023), 100879. DOI  | MR 4612244
[5] Bisgaard, M., Cour-Harbo, A. la, Dimon Bendtsen, J.: Adaptive control system for autonomous helicopter slung load operations. Control Eng. Pract., 2010.
[6] Bouabdallah, S., Murrieri, P., Siegwart, R.: Design and control of an indoor micro quadrotor. In: Proc. IEEE International Conference on Robotics and Automation, ICRA'04, IEEE 2004. Vol. 5, pp. 4393-4398. DOI 
[7] Chen, Y., Chen, H.: Prescribed performance control of underactuated surface vessels' trajectory using a neural network and integral time-delay sliding mode. Kybernetika 59 (2023), 2, 273-293. DOI  | MR 4600378
[8] Cruz, P. J., Oishi, M., Fierro, R.: Lift of a cable-suspended load by a quadrotor: A hybrid system approach. In: Proc. Am. Control Conf. 2015, pp. 1887-1892. DOI 
[9] Dhiman, K. K., Kothari, M., Abhishek, A.: Autonomous load control and transportation using multiple quadrotors. J. Aerosp. Inf. Syst. 17 (2020), 8, 417-435. DOI 
[10] Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Networks 2010.
[11] Ertugrul, M., Kaynak, O.: Neuro sliding mode control of robotic manipulators. Mechatronics 10 (2000), 1-2, 239-263. DOI 
[12] Faust, A., Palunko, I., Cruz, P., Fierro, R., Tapia, L.: Automated aerial suspended cargo delivery through reinforcement learning. Artif. Intell. 2017. DOI 10.1016/j.artint.2014.11.009
[13] Frikha, S., Djemel, M., Derbel, N.: A new adaptive neuro-sliding mode control for gantry crane. Int. J. Control Autom. Syst. 16 (2018), 2, 559-565. DOI 
[14] Gassner, M., Cieslewski, T., Scaramuzza, D.: Dynamic collaboration without communication: Vision-based cable-suspended load transport with two quadrotors. In: Proc. IEEE Int. Conf. Robot. Autom. 2017, pp. 5196-5202.
[15] Geng, J., Langelaan, J. W.: Cooperative transport of a slung load using load-leading control. J. Guid. Control. Dyn. 43 (2020), 7, 1313-1331. DOI 
[16] Grzonka, S., Grisetti, G., Burgard, W.: A fully autonomous indoor quadrotor. IEEE Trans. Robot. 28 (2012), 1, 90-100. DOI 
[17] Guo, K., Jia, J., Yu, X., Guo, L., Xie, L.: Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances. Control Eng. Pract. 102 (2019), 104560. DOI 
[18] Hoffmann, G., Huang, H., Waslander, S., Tomlin, C.: Quadrotor helicopter flight dynamics and control: Theory and experiment. In: AIAA Quidance, Navigation and Control Conference and Exhibit 2007, p. 6461.
[19] Hou, Z., Lu, P., Tu, Z.: Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure. Aerosp. Sci. Technol. 98 (2020), 105716. DOI 
[20] Hwangbo, J., Sa, I., Siegwart, R., Hutter, M.: Control of a quadrotor with reinforcement learning. IEEE Robot. Autom. Lett. 2 (2017), 4, 2096-2103. DOI 
[21] Jiang, Q., Kumar, V.: The inverse kinematics of cooperative transport with multiple aerial robots. IEEE Trans. Robot. 29 (2013), 1, 136-145. DOI 
[22] Slotine, J. J., Sastry, S. S.: Tracking control of nonlinear systems using sliding surfaces. Int. J. Control 38 (1083), 2, 465-492. DOI 10.1080/00207178308933088 | MR 0714077
[23] Lee, T., Leok, M., Mcclamroch, N. B.: Nonlinear robust tracking control of a quadrotor UAV on SE(3). Asian J. Control 15 (2013), 2, 391-408. DOI  | MR 3043449
[24] Lei, R., Chen, L.: Observer-based adaptive sliding mode fault-tolerant control for the underactuated space robot with joint actuator gain faults. Kybernetika 57 (2021), 1, 160-173. DOI  | MR 4231862
[25] Levant, Arie: Principles of 2-sliding mode design. Automatica 43 (2007), 4, 576-586. DOI  | MR 2306701
[26] Lewis, F. L.: Neural network control of robot manipulators. IEEE Expert. Syst. their Appl. 1996.
[27] Li, G., Ge, R., Loianno, G.: Cooperative transportation of cable suspended payloads with MAVs using monocular vision and inertial sensing. IEEE Robot. Autom. Lett. 6 (2021), 3, 5316-5323. DOI 
[28] Lim, H., Park, J., Lee, D., Kim, H. J.: Build your own quadrotor: Open-source projects on unmanned aerial vehicles. 2012.
[29] Liu, Z., Liu, X., Chen, J., Fang, Ch.: Altitude control for variable load quadrotor via learning rate based robust sliding mode controller. IEEE Access 7 (2019), 9736-9744. DOI 
[30] Noordin, A., Basri, M. A. M., Z.Mohamed, Mat Lazim, I.: Adaptive PID controller using sliding mode control approaches for quadrotor UAV attitude and position stabilization. Arab. J. Sci. Engrg. 46 (2021), 2, 963-981. DOI 
[31] Palunko, I., Fierro, R., Cruz, P.: Trajectory generation for swing-free maneuvers of a quadrotor with suspended payload: A dynamic programming approach. In: Proc. IEEE Int. Conf. Robot. Autom.,2012, pp. 2691-2697. DOI 
[32] Pizetta, I. Henrique Beloti, Brandao, A. S., Sarcinelli-Filho, M.: Modelling and control of a PVTOL quadrotor carrying a suspended load. In: Int. Conf. Unmanned Aircr. Syst. ICUAS 2015.
[33] Plestan, F., Glumineau, A., Laghrouche, S.: A new algorithm for high-order sliding mode control. Int. J. Robust Nonlinear Control 18 (2008), 4-5, 441-453. DOI  | MR 2392133
[34] Pounds, P., Mahony, R., Corke, P.: Modelling and control of a large quadrotor robot. Control Eng. Pract. 18 (2010), 7, 691-699. DOI 
[35] Qian, Ch., Lin, W.: Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42 (2001), 3, 185-200. DOI  | MR 2007048
[36] Rossomando, F., Rosales, C., Gimenez, J., Salinas, L., Soria, C., Sarcinelli-Filho, M., Carelli, R.: Aerial load transportation with multiple quadrotors based on a kinematic controller and a neural SMC DYNAMIC COMPEnsation. J. Intell. Robot. Syst. Theory Appl. 100 (2020), 2, 519-530. DOI 
[37] Shirani, B., Najafi, M., Izadi, I.: Cooperative load transportation using multiple UAVs. Aerosp. Sci. Technol. 84 (2019), 158-169. DOI 
[38] Sreenath, K., Lee, T., Kumar, V.: Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load. In: 52nd IEEE Conf. Decis. Control, Vol. 2019, pp. 2269-2274.
[39] Utkin, V. I.: Survey Paper: Variable structure systems with sliding modes. IEEE Trans. Automat. Control 1977. DOI 10.1109/TAC.1977.1101446 | MR 0484664
[40] Vahdanipour, M., Khodabandeh, M.: Adaptive fractional order sliding mode control for a quadrotor with a varying load. Aerosp. Sci. Technol. 86 (2019), 737-747. DOI 
[41] Villa, D. K. D., Brandão, A. S., Sarcinelli-Filho, M.: A survey on load transportation using multirotor UAVs. J. Intell. Robot. Syst. Theory Appl. 98 (2020), 2, 267-296. DOI 
[42] Wang, J., Wang, F., Wang, X., Yu, L.: Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system. Kybernetika 55 (2019), 3, 586-603. DOI  | MR 4016000
[43] Xiong, J. J., Zhang, G.: Sliding mode control for a quadrotor UAV with parameter uncertainties. In: Proc. 2nd Int. Conf. Control. Autom. Robot. ICCAR 2016. MR 3381053
[44] Yi, K., Gu, F., Yang, L., He, Y., Han, J.: Sliding mode control for a quadrotor slung load system. In: Chinese Control Conf. CCC, 2017.
[45] You, W., Li, F., Liao, L., Huang, M.: Data fusion of UWB and IMU based on unscented Kalman filter for indoor localization of quadrotor UAV. IEEE Access 8 (2020), 64971-64981. DOI 
[46] Yu, G., Cabecinhas, D., Cunha, R., Silvestre, C.: Nonlinear backstepping control of a quadrotor-slung load system. IEEE/ASME Trans. Mechatronics 24 (2019), 5, 2304-2315. DOI 
[47] Zhang, Ch., Li, S., Ding, S.: Finite-time output feedback stabilization and control for a quadrotor mini-aircraft. Kybernetika 48 (2012), 2, 206-222. MR 2954321 | Zbl 1246.93119
[48] Zhou, B., Pan, J., Gao, F., Shen, S.: RAPTOR: Robust and perception-aware trajectory replanning for quadrotor fast flight. IEEE Trans. Robot. 37 (2021), 6, 1992-2009. DOI 
[49] Zhou, X., Liu, R., Zhang, J., Zhang, X.: Stabilization of a quadrotor with uncertain suspended load using sliding mode control. In: Proc. ASME Des. Eng. Tech. Conf. 2016. DOI 
Partner of
EuDML logo