Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
run-length function; Bolyai-Rényi expansion; Lebesgue measure; Hausdorff dimension
Summary:
By iterating the Bolyai-Rényi transformation $T(x)=(x+1)^{2} \pmod 1$, almost every real number $x\in [0,1)$ can be expanded as a continued radical expression $$ x=-1+\sqrt {x_{1}+\sqrt {x_{2}+\cdots +\sqrt {x_{n}+\cdots }}} $$ with digits $x_{n}\in \{0,1,2\}$ for all $n\in \mathbb {N}$. For any real number $x\in [0,1)$ and digit $i\in \{0,1,2\}$, let $r_{n}(x,i)$ be the maximal length of consecutive $i$'s in the first $n$ digits of the Bolyai-Rényi expansion of $x$. We study the asymptotic behavior of the run-length function $r_{n}(x,i)$. We prove that for any digit $i\in \{0,1,2\}$, the Lebesgue measure of the set $$ D(i)=\Bigl \{x\in [0,1)\colon \lim _{n\rightarrow \infty } \frac {r_n(x,i)}{\log n}=\frac {1}{\log \theta _{i}} \Bigr \} $$ is $1$, where $\theta _{i}=1+\sqrt {4i+1}$. We also obtain that the level set $$ E_{\alpha }(i)=\Bigl \{x\in [0,1)\colon \lim _{n\rightarrow \infty } \frac {r_n(x,i)}{\log n}=\alpha \Bigr \} $$ is of full Hausdorff dimension for any $0\leq \alpha \leq \infty $.
References:
[1] Erdős, P., Rényi, A.: On a new law of large numbers. J. Anal. Math. 23 (1970), 103-111. DOI 10.1007/BF02795493 | MR 0272026 | Zbl 0225.60015
[2] Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, Chichester (2014). DOI 10.1002/0470013850 | MR 3236784 | Zbl 1285.28011
[3] Jenkinson, O., Pollicott, M.: Ergodic properties of the Bolyai-Rényi expansion. Indag. Math., New Ser. 11 (2000), 399-418. DOI 10.1016/S0019-3577(00)80006-3 | MR 1813480 | Zbl 0977.11032
[4] Ma, J.-H., Wen, S.-Y., Wen, Z.-Y.: Egoroff's theorem and maximal run length. Monatsh. Math. 151 (2007), 287-292. DOI 10.1007/s00605-007-0455-7 | MR 2329089 | Zbl 1170.28001
[5] Philipp, W.: Some metrical theorems in number theory. Pac. J. Math. 20 (1967), 109-127. DOI 10.2140/pjm.1967.20.109 | MR 0205930 | Zbl 0144.04201
[6] Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8 (1957), 477-493. DOI 10.1007/BF02020331 | MR 0097374 | Zbl 0079.08901
[7] Song, T., Zhou, Q.: On the longest block function in continued fractions. Bull. Aust. Math. Soc. 102 (2020), 196-206. DOI 10.1017/S0004972720000076 | MR 4138819 | Zbl 1464.11080
[8] Sun, Y., Xu, J.: On the maximal run-length function in the Lüroth expansion. Czech. Math. J. 68 (2018), 277-291. DOI 10.21136/CMJ.2018.0474-16 | MR 3783599 | Zbl 1458.11125
[9] Tong, X., Yu, Y., Zhao, Y.: On the maximal length of consecutive zero digits of $\beta$-expansions. Int. J. Number Theory 12 (2016), 625-633. DOI 10.1142/S1793042116500408 | MR 3477410 | Zbl 1337.11053
[10] Wang, B.-W., Wu, J.: On the maximal run-length function in continued fractions. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 34 (2011), 247-268.
[11] Zou, R.: Hausdorff dimension of the maximal run-length in dyadic expansion. Czech. Math. J. 61 (2011), 881-888. DOI 10.1007/s10587-011-0055-5 | MR 2886243 | Zbl 1249.11085
Partner of
EuDML logo