Title: | On $m$-expansive tuples of commuting operators on a Banach space (English) |
Author: | Chō, Muneo |
Author: | Hur, Injo |
Author: | Lee, Ji Eun |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 75 |
Issue: | 2 |
Year: | 2025 |
Pages: | 519-532 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We present $m$-expansive tuples of commuting operators in a complex Banach space, expanding upon the concept of $m$-isometric tuples. We provide a characterization of the joint approximate point spectrum of these tuples. Furthermore, we investigate a multivariable extension of these single-variable $[m,C]$-expansive operators discussed in M. Chō, I. Hur, J. E. Lee (2024) and delve into several fundamental properties associated with them. (English) |
Keyword: | $[m,C]$-expensive operator |
Keyword: | $[m,C]$-expansive tuple of operator |
Keyword: | Banach space |
MSC: | 47A11 |
MSC: | 47B01 |
DOI: | 10.21136/CMJ.2025.0192-24 |
. | |
Date available: | 2025-05-20T11:45:50Z |
Last updated: | 2025-05-26 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152955 |
. | |
Reference: | [1] Agler, J., Stankus, M.: $m$-isometric transformations of Hilbert space. I.Integral Equations Oper. Theory 21 (1995), 383-429. Zbl 0836.47008, MR 1321694, 10.1007/BF01222016 |
Reference: | [2] Ambrozie, C.-G., Engliš, M., Müller, V.: Operator tuples and analytic models over general domains in $\Bbb{C}^n$.J. Oper. Theory 47 (2002), 287-302. Zbl 1019.47015, MR 1911848 |
Reference: | [3] Amor, A. Ben: An extension of Henrici theorem for the joint approximate spectrum of commuting spectral operators.J. Aust. Math. Soc. 75 (2003), 233-245. Zbl 1060.47007, MR 2000431, 10.1017/S1446788700003748 |
Reference: | [4] Bermúdez, T., Martinón, A., Müller, V.: $(m,q)$-isometries on metric spaces.J. Oper. Theory 72 (2014), 313-328. Zbl 1363.54041, MR 3272034, 10.7900/jot.2013jan29.1996 |
Reference: | [5] Bonsall, F. F., Duncan, J.: Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras.London Mathematical Society Lecture Note Series 2. Cambridge University Press, London (1971). Zbl 0207.44802, MR 0288583, 10.1017/CBO9781107359895 |
Reference: | [6] Chō, M., Hur, I., Lee, J. E.: Generalization of expansive operators.Math. Inequal. Appl. 27 (2024), 159-171. Zbl 07926904, MR 4702249, 10.7153/mia-2024-27-12 |
Reference: | [7] Chō, M., Ko, E., Lee, J. E.: On $(m,C)$-isometric operators.Complex Anal. Oper. Theory 10 (2016), 1679-1694. Zbl 1373.47006, MR 3558362, 10.1007/s11785-016-0549-0 |
Reference: | [8] Chō, M., Lee, J. E., Motoyoshi, H.: On $[m,C]$-isometric operators.Filomat 31 (2017), 2073-2080. Zbl 1484.47011, MR 3635243, 10.2298/FIL1707073C |
Reference: | [9] Chō, M., Tanahashi, K.: On conjugations for Banach spaces.Sci. Math. Jpn. 81 (2018), 37-45. Zbl 06902693, MR 3792440, 10.32219/isms.81.1_37 |
Reference: | [10] Chō, M., Żelazko, W.: On geometric spectral radius of commuting $n$-tuples of operators.Hokkaido Math. J. 21 (1992), 251-258. Zbl 0784.47004, MR 1169792, 10.14492/hokmj/1381413680 |
Reference: | [11] Choi, M. D., Davis, C.: The spectral mapping theorem for joint approximate point spectrum.Bull. Am. Math. Soc. 80 (1974), 317-321. Zbl 0276.47001, MR 0333780, 10.1090/S0002-9904-1974-13481-6 |
Reference: | [12] Gleason, J., Richter, S.: $m$-isometric commuting tuples of operators on a Hilbert space.Integral Equations Oper. Theory 56 (2006), 181-196. Zbl 1112.47003, MR 2264515, 10.1007/s00020-006-1424-6 |
Reference: | [13] Gu, C.: The $(m,q)$-isometric weighted shifts on $l_p$ spaces.Integral Equations Oper. Theory 82 (2015), 157-187. Zbl 1314.47048, MR 3345637, 10.1007/s00020-015-2234-5 |
Reference: | [14] Hoffmann, P. H. W., Mackey, M.: $(m,p)$-and $(m,\infty)$-isometric operator tuples on normed spaces.Asian-Eur. J. Math. 8 (2015), Article ID 1550022, 32 pages. Zbl 1325.47014, MR 3354483, 10.1142/S1793557115500229 |
Reference: | [15] Mahmoud, S. A. O. A., Chō, M., Lee, J. E.: On $(m,C)$-isometric commuting tuples of operators on a Hilbert space.Result. Math. 73 (2018), Article ID 51, 31 pages. Zbl 1512.47042, MR 3770897, 10.1007/s00025-018-0810-0 |
Reference: | [16] Motoyashi, H.: Linear operators and conjugations on a Banach space.Acta Sci. Math. 85 (2019), 325-336. Zbl 1449.47041, MR 3967893, 10.14232/actasm-018-801-y |
Reference: | [17] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory.London Mathematical Society Monographs. New Series 20. Clarendon Press, Oxford (2000). Zbl 0957.47004, MR 1747914, 10.1093/oso/9780198523819.002.0001 |
Reference: | [18] Taylor, J. L.: A joint spectrum for several commuting operators.J. Funct. Anal. 6 (1970), 172-191. Zbl 0233.47024, MR 0268706, 10.1016/0022-1236(70)90055-8 |
Reference: | [19] Taylor, J. L.: The analytic-functional calculus for several commuting operators.Acta Math. 125 (1970), 1-38. Zbl 0233.47025, MR 0271741, 10.1007/BF02392329 |
. |
Fulltext not available (moving wall 24 months)