Previous |  Up |  Next

Article

Title: The sharp constant for truncated Hardy-Littlewood maximal inequality (English)
Author: Wu, Jia
Author: Wei, Mingquan
Author: Yan, Dunyan
Author: Liu, Shao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 549-565
Summary lang: English
.
Category: math
.
Summary: This paper focuses on the operator norm of the truncated Hardy-Littlewood maximal operator $M^b_a$ and the strong truncated Hardy-Littlewood maximal operator $\widetilde {M}^{\boldsymbol {b}}_{\boldsymbol {a}}$, respectively. We first present the $L^1$-norm of $M^b_a$, and then the $L^1$-norm of $\widetilde {M}^{\boldsymbol {b}}_{\boldsymbol {a}}$ is given. Our study may have some enlightening significance for the research on sharp constant for the classical Hardy-Littlewood maximal inequality. (English)
Keyword: sharp constant
Keyword: truncated maximal operator
Keyword: strong maximal operator
MSC: 42B25
DOI: 10.21136/CMJ.2025.0259-24
.
Date available: 2025-05-20T11:46:47Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152957
.
Reference: [1] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory.Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). Zbl 0834.46021, MR 1411441, 10.1007/978-3-662-03282-4
Reference: [2] Aldaz, J. M.: Remarks on the Hardy-Littlewood maximal function.Proc. R. Soc. Edinb., Sect. A, Math. 128 (1998), 1-9. Zbl 0892.42010, MR 1606325, 10.1017/S0308210500027116
Reference: [3] Aldaz, J. M., Lázaro, J. P.: The best constant for the centered maximal operator on radial decreasing functions.Math. Inequal. Appl. 14 (2011), 173-179. Zbl 1210.42031, MR 2796986, 10.7153/mia-14-14
Reference: [4] Aldaz, J. M., Lázaro, J. P.: On high dimensional maximal operators.Banach J. Math. Anal. 7 (2013), 225-243. Zbl 1266.42041, MR 3039949, 10.15352/bjma/1363784233
Reference: [5] Grafakos, L.: Classical Fourier Analysis.Graduate Texts in Mathematics 249. Springer, New York (2014). Zbl 1304.42001, MR 3243734, 10.1007/978-1-4939-1194-3
Reference: [6] Grafakos, L., Montgomery-Smith, S.: Best constants for uncentered maximal functions.Bull. Lond. Math. Soc. 29 (1997), 60-64. Zbl 0865.42020, MR 1416408, 10.1112/S0024609396002081
Reference: [7] Lu, S., Yan, D.: $L^p$ boundedness of multilinear oscillatory singular integrals with Calderón-Zygmund kernel.Sci. China, Ser. A 45 (2002), 196-213. Zbl 1054.42013, MR 1893315, 10.1360/02ys9021
Reference: [8] Melas, A. D.: On the centered Hardy-Littlewood maximal operator.Trans. Am. Math. Soc. 354 (2002), 3263-3273. Zbl 1015.42015, MR 1897399, 10.1090/S0002-9947-02-02900-8
Reference: [9] Melas, A. D.: The best constant for the centered Hardy-Littlewood maximal inequality.Ann. Math. (2) 157 (2003), 647-688. Zbl 1055.42013, MR 1973058, 10.4007/annals.2003.157.647
Reference: [10] Soria, J., Tradacete, P.: Best constants for the Hardy-Littlewood maximal operator on finite graphs.J. Math. Anal. Appl. 436 (2016), 661-682. Zbl 1329.05286, MR 3446971, 10.1016/j.jmaa.2015.11.076
Reference: [11] Wei, M., Nie, X., Wu, D., Yan, D.: A note on Hardy-Littlewood maximal operators.J. Inequal. Appl. 2016 (2016), Article ID 21, 13 pages. Zbl 1333.42040, MR 3450806, 10.1186/s13660-016-0963-x
Reference: [12] Zhang, X., Wei, M., Yan, D., He, Q.: Equivalence of operator norm for Hardy-Littlewood maximal operators and their truncated operators on Morrey spaces.Front. Math. China 15 (2020), 215-223 \99999DOI99999 10.1007/s11464-020-0812-6 . Zbl 1440.42073, MR 4074355, 10.1007/s11464-020-0812-6
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo