Previous |  Up |  Next

Article

Title: On solutions of a certain nonlinear differential-difference functional equation (English)
Author: Mandal, Rajib
Author: Biswas, Raju
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 2
Year: 2025
Pages: 263-289
Summary lang: English
.
Category: math
.
Summary: We investigate all the possible finite order entire solutions of the Fermat-type differential-difference functional equation $(Af(z))^2+R^2(z)(Bf^{(m)}(z+c)+Cf^{(n)}(z))^2=Q(z)$, where $m,n\in \mathbb {N}$, $A,B,C\in \mathbb {C}\setminus \{0\}$ and $R(z)$, $Q(z)$ are nonzero polynomials. The results significantly improve some earlier findings, especially the results due to A. Banerjee and T. Biswas (2021). We also show that the equation does not have any non-entire meromorphic solution. We provide some examples to support the results. (English)
Keyword: functional equation
Keyword: differential-difference equation
Keyword: Fermat-type equation
Keyword: Nevanlinna theory
MSC: 30D35
MSC: 34M05
MSC: 39B32
DOI: 10.21136/MB.2024.0181-23
.
Date available: 2025-05-20T11:57:08Z
Last updated: 2025-05-20
Stable URL: http://hdl.handle.net/10338.dmlcz/152975
.
Reference: [1] Baker, I. N.: On a class of meromorphic functions.Proc. Am. Math. Soc. 17 (1966), 819-822. Zbl 0161.35203, MR 0197732, 10.1090/S0002-9939-1966-0197732-X
Reference: [2] Banerjee, A., Biswas, T.: On the transcendental solutions of Fermat type delay-differential and $c$-shift equations with some analogous results.Sib. \`Elektron. Mat. Izv. 18 (2021), 479-494. Zbl 1474.34546, MR 4278805, 10.33048/semi.2021.18.034
Reference: [3] Chen, M. F., Gao, Z. S.: Entire solutions of differential-difference equation and Fermat type $q$-difference differential equations.Commun. Korean Math. Soc. 30 (2015), 447-456. Zbl 1332.34139, MR 3423727, 10.4134/CKMS.2015.30.4.447
Reference: [4] Iyer, V. Ganapathy: On certain functional equations.J. Indian Math. Soc., New Ser. 3 (1939), 312-315. Zbl 0022.21401, MR 0001111
Reference: [5] Gross, F.: On the equation $f^n+g^n=1$.Bull. Am. Math. Soc. 72 (1966), 86-88. Zbl 0131.13603, MR 0185125, 10.1090/S0002-9904-1966-11429-5
Reference: [6] Gross, F.: On the functional equation $f^n+g^n =h^n$.Am. Math. Mon. 73 (1966), 1093-1096. Zbl 0154.40104, MR 0204655, 10.2307/2314644
Reference: [7] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038
Reference: [8] Heittokangas, J., Korhonen, R., Laine, I.: On meromorphic solutions of certain nonlinear differential equations.Bull. Aust. Math. Soc. 66 (2002), 331-343. Zbl 1047.34101, MR 1932356, 10.1017/S000497270004017X
Reference: [9] Laine, I.: Nevanlinna Theory and Complex Differential Equations.de Gruyter Studies in Mathematics 15. Walter de Gruyter, Berlin (1993). Zbl 0784.30002, MR 1207139, 10.1515/9783110863147
Reference: [10] Li, B. Q.: On certain non-linear differential equations in complex domains.Arch. Math. 91 (2008), 344-353. Zbl 1163.34059, MR 2447549, 10.1007/s00013-008-2648-2
Reference: [11] Li, P., Yang, C.-C.: On the nonexistence of entire solutions of certain type of nonlinear differential equations.J. Math. Anal. Appl. 320 (2006), 827-835. Zbl 1100.34066, MR 2225998, 10.1016/j.jmaa.2005.07.066
Reference: [12] Liu, K.: Meromorphic functions sharing a set with applications to difference equations.J. Math. Anal. Appl. 359 (2009), 384-393. Zbl 1177.30035, MR 2542182, 10.1016/j.jmaa.2009.05.061
Reference: [13] Liu, K., Cao, T.-B.: Entire solutions of Fermat type $q$-difference differential equations.Electron. J. Differ. Equ. 2013 (2013), Article ID 59, 10 pages. Zbl 1287.39006, MR 3035258
Reference: [14] Liu, K., Cao, T., Cao, H.: Entire solutions of Fermat type differential-difference equations.Arch. Math. 99 (2012), 147-155. Zbl 1270.34170, MR 2958330, 10.1007/s00013-012-0408-9
Reference: [15] Liu, K., Dong, X.: Fermat type differential and difference equations.Electron. J. Differ. Equ. 2015 (2015), Article ID 159, 10 pages. Zbl 1321.39023, MR 3358531
Reference: [16] Liu, K., Yang, L.: On entire solutions of some differential-difference equations.Comput. Methods Funct. Theory 13 (2013), 433-447. Zbl 1314.39022, MR 3102646, 10.1007/s40315-013-0030-2
Reference: [17] Liu, K., Yang, L.: A note on meromorphic solutions of Fermat types equations.An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 62 (2016), 317-325. Zbl 1389.39038, MR 3680209
Reference: [18] Liu, K., Yang, L., Liu, X.: Existence of entire solutions of nonlinear difference equations.Czech. Math. J. 61 (2011), 565-576. Zbl 1249.30102, MR 2905424, 10.1007/s10587-011-0075-1
Reference: [19] Mandal, R., Biswas, R.: On the transcendental entire functions satisfying some Fermat-type differential-difference equations.Indian J. Math. 65 (2023), 153-183. Zbl 7782949, MR 4652412
Reference: [20] Montel, P.: Leçons sur les familles normales de fonctions analytiques et leurs applications.Gauthier-Villars, Paris (1927), French \99999JFM99999 53.0303.02. MR 0087875
Reference: [21] Tang, J., Liao, L.: The transcendental meromorphic solutions of a certain type of nonlinear differential equations.J. Math. Anal. Appl. 334 (2007), 517-527. Zbl 1127.34051, MR 2332572, 10.1016/j.jmaa.2006.12.075
Reference: [22] Wang, H., Xu, H. Y., Tu, J.: The existence and forms of solutions for some Fermat-type differential-difference equations.AIMS Math. 5 (2020), 685-700. Zbl 1484.30040, MR 4140495, 10.3934/math.2020046
Reference: [23] Yang, C.-C.: A generalization of a theorem of P. Montel on entire functions.Proc. Am. Math. Soc. 26 (1970), 332-334. Zbl 0202.36001, MR 0264080, 10.1090/S0002-9939-1970-0264080-X
Reference: [24] Yang, C.-C.: On entire solutions of a certain type of nonlinear differential equation.Bull. Aust. Math. Soc. 64 (2001), 377-380. Zbl 0991.30019, MR 1878889, 10.1017/S0004972700019845
Reference: [25] Yang, C.-C., Laine, I.: On analogies between nonlinear difference and differential equations.Proc. Japan Acad., Ser. A 86 (2010), 10-14. Zbl 1207.34118, MR 2598818, 10.3792/pjaa.86.10
Reference: [26] Yang, C.-C., Li, P.: On the transcendental solutions of a certain type of nonlinear differential equations.Arch. Math. 82 (2004), 442-448. Zbl 1052.34083, MR 2061450, 10.1007/s00013-003-4796-8
Reference: [27] Yang, C.-C., Yi, H. X.: Uniqueness Theory of Meromorphic Functions.Mathematics and its Applications 557. Kluwer Academic, Dordrecht (2003). Zbl 1070.30011, MR 2105668, 10.1007/978-94-017-3626-8
Reference: [28] Zhang, X., Liao, L. W.: On a certain type of nonlinear differential equations admitting transcendental meromorphic solutions.Sci. China, Math. 56 (2013), 2025-2034. Zbl 1287.34077, MR 3102624, 10.1007/s11425-013-4594-0
.

Files

Files Size Format View
MathBohem_150-2025-2_6.pdf 342.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo