Previous |  Up |  Next

Article

Title: Optimality conditions for an interval-valued vector problem (English)
Author: Prasad, Ashish Kumar
Author: Khatri, Julie
Author: Ahmad, Izhar
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 61
Issue: 2
Year: 2025
Pages: 221-237
Summary lang: English
.
Category: math
.
Summary: The present article considers a nonsmooth interval-valued vector optimization problem with inequality constraints. We first figure out Fritz John and Karush-Kuhn-Tucker type necessary optimality conditions for the interval-valued problem designed in the paper under quasidifferentiable $\mathfrak{F}$-convexity in connection with compact convex sets. Subsequently, sufficient optimality conditions are extrapolated under aforesaid quasidifferentiability supported by a suitable numerical example. (English)
Keyword: interval-valued vector optimization problem
Keyword: quasidifferentiable $\mathfrak {F}$-convexity
Keyword: LU-Pareto optimality
MSC: 49J52
MSC: 90C26
MSC: 90C29
MSC: 90C30
DOI: 10.14736/kyb-2025-2-0221
.
Date available: 2025-06-02T09:53:43Z
Last updated: 2025-06-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152989
.
Reference: [1] Antczak, T.: Optimality conditions in quasidifferentiable vector optimization..J. Optim. Theory Appl. 171 (2016), 708-725. MR 3557446,
Reference: [2] Antczak, T.: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function..Acta Math. Scientia 37 (2017), 1133-1150. MR 3657212,
Reference: [3] Bhatia, D., Jain, P.: Generalized (F,$\rho$)-convexity and duality for nonsmooth multi-objective programs..Optimization 31 (1994), 239-244.
Reference: [4] Bhurjee, A. K., Panda, G.: Efficient solution of interval optimization problem..Math. Methods Oper. Res. 76 (2012), 273-288. MR 3000987,
Reference: [5] Bolintinéanu, S.: Approximate efficiency and scalar stationarity in unbounded nonsmooth convex vector optimization problems..J. Optim. Theory Appl. 106 (2000), 265-296. MR 1788925,
Reference: [6] Brandao, A. J. V., Rojas-Medar, M. A., Silva, G. N.: Optimality conditions for Pareto nonsmooth nonconvex programming in Banach spaces..J. Optim. Theory Appl. 103 (1999), 65-73. MR 1715008, 10.1023/A:1021769232224
Reference: [7] Chankong, V., Haimes, Y.: Multiobjective Decision Making: Theory and Methodology..North-Holland, New York 1983. MR 0780745
Reference: [8] Chinchuluun, A., Pardalos, P. M.: A survey of recent developments in multiobjective optimization..Ann. Oper. Res. 154 (2007), 29-50. MR 2332820,
Reference: [9] Clarke, F. H.: Optimization and Nonsmooth Analysis..Wiley, New York 1983. MR 0709590
Reference: [10] Coladas, L., Li, Z., Wang, S.: Optimality conditions for multiobjective and nonsmooth minimization in abstract spaces..Bull. Austral. Math. Soc. 50 (1994), 205-218. MR 1296749,
Reference: [11] Craven, B. D.: Nonsmooth multiobjective programming..Numer. Funct. Anal. Optim. 10 (1989), 49-64. MR 0978802, 10.1080/01630568908816290
Reference: [12] Demyanov, V. F., Rubinov, A. M.: On quasidifferentiable functional..Dokl. Akad. Nauk SSSR 250 (1980), 21-25 (translated in Soviet Mathematics Doklady 21 (1980), 14-17.) MR 0556111
Reference: [13] Demyanov, V. F., Rubinov, A. M.: On some approaches to the non-smooth optimization problem..Ekonom. Matem. Metody 17 (1981), 1153-1174. MR 0653043
Reference: [14] Abdouni, B. El., Thibault, L.: Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces..Optimization 26 (1992), 277-285. MR 1236612,
Reference: [15] Eppler, K., Luderer, B.: The Lagrange principle and quasidifferential calculus..Wissenschaftliche Zeitschrift der Technischen Hochschule Karl-Marx-Stadt 29 (1987), 187-192. MR 0909080
Reference: [16] Gao, Y.: Demyanov's difference of two sets and optimality conditions in Lagrange multiplier type for constrained quasidifferentiable optimization..J. Optim. Theory Appl. 104 (2000), 377-394. MR 1752323,
Reference: [17] Gao, Y.: Optimality conditions with Lagrange multipliers for inequality constrained quasidifferentiable optimization..In: Quasidifferentiability and Related Topics (V. Demyanov and A. Rubinov, eds.), Kluwer Academic Publishers 2000, pp. 151-162. MR 1766796
Reference: [18] Huang, N. J., Li, J., Wu, S. Y.: Optimality conditions for vector optimization problems..J. Optim. Theory Appl. 142 (2009), 323-342. MR 2525793,
Reference: [19] Jayswal, A., Stancu-Minasian, I. M., Ahmad, I.: On sufficiency and duality for a class of interval-valued programming problems..Appl. Math. Comput. 218 (2011), 4119-4127. MR 2862082,
Reference: [20] Jeyakumar, V., Yang, X. Q.: Convex composite multi-objective nonsmooth programming..Math. Program. 59 (1993), 325-343. MR 1226821,
Reference: [21] Kanniappan, P.: Necessary conditions for optimality of nondifferentiable convex multiobjective programming..J. Optim. Theory Appl. 40 (1983), 167-174. MR 0703314,
Reference: [22] Kuntz, L., Scholtes, S.: Constraint qualifications in quasidifferentiable optimization..Math. Program. 60 (1993), 339-347. MR 1234879,
Reference: [23] Luc, D. T.: Theory of Vector Optimization..Lect. Notes Econom. Math. Systems 319 Springer, Berlin 1989. Zbl 0654.90082, MR 1116766, 10.1007/978-3-642-50280-4_3
Reference: [24] Luderer, B., Rösiger, R.: On Shapiro's results in quasidifferential calculus..Math. Program. 46 (1990), 403-407. MR 1054147,
Reference: [25] Miettinen, K. M.: Nonlinear Multiobjective Optimization..International Series in Operations Research and Management Science 12, Kluwer Academic Publishers, Boston 2004. MR 1784937
Reference: [26] Minami, M.: Weak Pareto-optimal necessary conditions in nondifferentiable multiobjective program on a Banach space..J. Optim. Theory Appl. 41 (1983), 451-461. MR 0728312,
Reference: [27] Polyakova, L. N.: On the minimization of a quasidifferentiable function subject to equality-type constraints..Math. Program. Studies 29 (1986), 44-55. MR 0837885,
Reference: [28] Shapiro, A.: On optimality conditions in quasidifferentiable optimization..SIAM Control Appl. 22 (1984), 610-617. MR 0747972,
Reference: [29] Sun, Y., Wang, L.: Optimality conditions and duality in nondifferentiable interval-valued programming..J. Industr. Management Optim. 9 (2013), 131-142. MR 3003020, 10.3934/jimo.2013.9.131
Reference: [30] Uderzo, A.: Quasi-multipliers rules for quasidifferentiable extremum problems..Optimization 51 (2002), 761-795. MR 1941714,
Reference: [31] Wang, S.: Lagrange conditions in nonsmooth and multiobjective mathematical programming..Math. Econom. 1 (1984), 183-193.
Reference: [32] Ward, D. E.: A constraint qualification in quasidifferentiable programming..Optimization 22 (1991), 661-668. MR 1120494,
Reference: [33] Wu, H. C.: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function..European J. Oper. Res. 176 (2007), 46-59. MR 2265133,
Reference: [34] Xia, Z. Q., Song, C. L., Zhang, L. W.: On Fritz John and KKT necessary conditions of constrained quasidifferentiable optimization..Int. J. Pure Appl. Math. 23 (2005), 299-310. MR 2176203
Reference: [35] Zhang, J., Liu, S., Li, L., Feng, Q.: The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function..Optim. Lett. 8 (2014), 607-631. MR 3163292, 10.1007/s11590-012-0601-6
Reference: [36] Zhou, H. C., Wang, Y. J.: Optimality condition and mixed duality for interval-valued optimization..In: Fuzzy Information and Engineering, Vol. 2, Advances in Intelligent and Soft Computing 62, Proc. Third International Conference on Fuzzy Information and Engineering (ICFIE 2009), Springer 2009, pp. 1315-1323. MR 2461173
.

Files

Files Size Format View
Kybernetika_61-2025-2_5.pdf 487.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo