Previous |  Up |  Next

Article

Keywords:
finite fields; fully actuated system approach; stabilizability; multi-agent systems
Summary:
The problem of stabilizability of high-order fully actuated (HOFA) multi-agent systems over finite fields is considered in this paper. The necessary and sufficient conditions for the stabilizability of HOFA multi-agent systems are presented, which indicates the stabilizability is closely related to the interaction topology among agents. Using the full-actuation property of HOFA models, a stabilization control protocol with neighbor interaction is given for HOFA multi-agent systems. Additionally, when the multi-agent system is stabilizable, the time for the system to reach a stable state can be determined through the control protocol. Finally, the results are employed to solve the formation control problem, and some sufficient and/or necessary conditions are proposed. Numerical examples are presented to demonstrate the effectiveness of the proposed results.
References:
[1] Arel, I., Liu, C., Urbanik, T., Kohls, A. G.: Reinforcement learning-based multi-agent system for network traffic signal control. IET Intell. Transp. Syst. 4 (2010), 128-135. DOI 
[2] Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., Taylor, C.: A vision-based formation control framework. IEEE Trans. Robot. Automat. 18, (2002), 5, 813-825. DOI 
[3] Ding, W., Yan, G., Lin, Z.: Collective motions and formations under pursuit strategies on directed acyclic graphs. Automatica 46 (2010), 1, 174-181. DOI  | MR 2578288
[4] Duan, G.: Fully actuated system approach for control: An overview. IEEE Trans. Cybernet. 54 (2024), 12, 7285-7306. DOI  | MR 4358068
[5] Duan, G.: High-order system approaches: I. Full-actuation and parametric design. Acta Automat. Sin. 46 (2020), 7, 1333-1345. DOI 
[6] Duan, G.: High-order system approaches: II. Controllability and fully-actuation. Acta Automat. Sinica 46 (2020), 8, 1571-1581. DOI 
[7] Duan, G.: High-order fully actuated system approaches: Part I. Models and basic procedure. Int. J. Syst. Sci. 52 (2021), 2, 422-435. DOI  | MR 4213568
[8] Duan, G.: High-order fully actuated system approaches: Part II. Generalized strict-feedback systems. Int. J. Syst. Sci. 52 (2021), 3, 437-454. DOI  | MR 4216261
[9] Duan, G.: High-order fully actuated system approaches: Part VII. Controllability, stabilizability and parametric designs. Int. J. Syst. Sci. 52 (2021), 14, 3091-3114. DOI  | MR 4323456
[10] Duan, G.: High-orderfully actuated system approaches: Part X. Basics of discrete-time systems. Int. J. Syst. Sci. 53 (2021), 4, 810-832. DOI  | MR 4385671
[11] Fax, J. A.: Optimal and Cooperative Control of Vehicle Formations. Ph.D. Thesis, California Institute of Technology, Pasaden 2002.
[12] Fax, J. A., Murray, R. M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Automat. Control 49 (2004), 9, 1465-1476. DOI  | MR 2086912
[13] Franceschelli, M., Gasparri, A., Giua, A., Ulivi, G.: Decentralized stabilization of heterogeneous linear multi-agent systems. In: Proc. 2010 IEEE Int. Conf. Robot. Autom., 2010, pp. 3556-3561. DOI 
[14] Guan, Y., Ji, Z., Zhang, L., Wang, L.: Decentralized stabilizability of multi-agent systems under fixed and switching topologies. Syst. Control Lett. 62 (2013), 5, 438-446. DOI  | MR 3044456
[15] Guan, Y., Kong, X.: Stabilisability of discrete-time multi-agent systems under fixed and switching topologies. Int. J. Syst. Sci 50, (2019), 2, 294-306. DOI  | MR 3902207
[16] Jadbabaie, A., Lin, J., Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Control 48 (2003), 6, 988-1001. DOI  | MR 1986266
[17] Ji, Z., Wang, Z., Lin, H.: Controllability of multi-agent systems with time-delay in state and switching topology. Int. J. Control 83 (2010), 2, 371-386. DOI  | MR 2606189
[18] Kalman, R. E.: Contribution to the theory of optimal control. Bol. Soc. Mat. Mexicana 5 (1960), 2, 102-119. MR 0127472
[19] Kalman, R. E.: Controllability of linear dynamical systems. Theory Differ. Equat. 1 (1963), 3, 189-213. MR 0155070
[20] Kim, H., Shim, H., Back, J., Seo, J.: Stabilizability of a group of single integrators and its application to decentralized formation problem. In: Proc. 50th IEEE Conf. Decis. Control Euro. Control Conf., 2011, pp. 4829-4834. DOI 
[21] Li, X., Chen, M., Su, H., Li, C.: Consensus networks with switching topology and time-delays over finite fields. Automatica 68 (2016), 39-43. DOI  | MR 3483666
[22] Li, Y., Li, H., Ding, X., Zhao, G.: Leader-follower consensus of multiagent systems with time delays over finite fields. IEEE Trans. Cybernet. 49 (2018), 8, 3203-3208. DOI 
[23] Li, Y., Li, H.: Controllability of multi-agent systems over finite fields via semi-tensor product method. In: Proc. 38th Chin. Control Conf., 2019, pp. 5606-5611. DOI 
[24] Li, X., Su, H., Chen, M.: Consensus networks with time-delays over finite fields. Int. J. Control 89 (2016), 5, 1000-1008. DOI  | MR 3460585
[25] Ligtenberg, A., Wachowicz, M., Bregt, A. K., A.Beulensb, Kettenis, D. L.: A design and application of a multi-agent system for simulation of multi-actor spatial planning. J. Environ. Management 72 (2004), 1, 43-55. DOI 
[26] Liu, G.: Coordination of networked nonlinear multi-agents using a high-order fully actuated predictive control strategy. IEEE/CAA J. Autom. Sinica 9 (2022), 4, 615-623. DOI 
[27] Logenthiran, T., Srinivasan, D., Khambadkone, A. M.: Multi-agent system for energy resource scheduling of integrated microgrids in a distributed system. Electr. Power Syst. Res. 81 (2011), 1, 138-148. DOI 
[28] Lu, Z., Zhang, L., Wang, L.: Structural controllability of multi-agent systems with general linear dynamics over finite fields. In: Proc. 35th Chin. Control Conf., 2016, pp. 8230-8235. DOI 
[29] Lu, Z., Zhang, L., Wang, L.: Controllability analysis of multi-agent systems with switching topology over finite fields. Sci. China Inform. Sci. 62 (2019), 12, 12201. DOI  | MR 3844621
[30] Lynch, N.: Distributed Algorithms. Elsevier, San Francisco 1996. MR 1388778
[31] Meng, M., Li, X., Xiao, G.: Synchronization of networks over finite fields. Automatica 115 (2020), 108877. DOI  | MR 4062526
[32] Mullen, G., Panario, D.: Handbook of Finite Fields. Chapman and Hall/CRC, Boca Raton 2013. DOI 
[33] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 9, 1520-1533. DOI  | MR 2086916
[34] Pasqualetti, F., Borra, D., Bullo, F.: Consensus networks over finite fields. Automatica 50 (2014), 2, 349-358. DOI  | MR 3163782
[35] Reger, J.: Linear systems over finite fields - modeling, analysis, and synthesis. Automatisierungstechnik 53 (2005), 1, 45. DOI 
[36] Ren, H., Cheng, Z., Qin, J., Lu, R.: Deception attacks on event-triggered distributed consensus estimation for nonlinear systems. Automatica 154 (2023), 111100. DOI  | MR 4597370
[37] Ren, H., Liu, R., Cheng, Z., Ma, H., Li, H.: Data-driven event-triggered control for nonlinear multi-agent systems with uniform quantization. IEEE Trans. Circuits Syst. II: Express Br. 71 (2023), 2, 712-716. DOI 
[38] Shreyas, S., Christoforos, H.: Structural controllability and observability of linear systems over finite fields with applications to multi-agent systems. IEEE Trans. Automat. Control 58 (2013), 1, 60-73. DOI  | MR 3006707
[39] Su, H., Chen, M., Lam, J., Lin, Z.: Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback. IEEE Trans. Circuits Syst. I: Regul. Pap. 60 (2013), 7, 1881-1889. DOI  | MR 3072458
[40] Sun, Y., Ji, Z., Liu, Y., Lin, C.: On stabilizability of multi-agent systems. Automatica 144 (2022), 110491. DOI  | MR 4453069
[41] Tay, T., Mareels, I., Moore, J.: High performance control. Springer Science Business Media, New York 1998. DOI  | MR 1471704
[42] Tanner, H. G.: On the controllability of nearest neighbor interconnections. In: Proc. 43rd IEEE Conf. Decis. Control 3 (2005), pp. 2467-2472. DOI 
[43] Toledo, R. A. H.: Linear finite dynamical systems. Commun. Algebra 33 (2005), 9, 2977-2989. DOI  | MR 2175374
[44] Xiang, L., Zhu, J., Chen, F., Chen, G.: Controllability of weighted and directed networks with nonidentical node dynamics. Math. Probl. Engrg. (2013). DOI  | MR 3062855
[45] Xu, X., Hong, Y.: Leader-following consensus of multi-agent systems over finite fields. In: Proc. 53rd IEEE Conf. Decis. Control, 2014, pp. 2999-3004. DOI 
[46] Yang, Y., Feng, J., Jia, L.: Recent advances of finite-field networks. Math. Model. Control 3 (2023), 3, 244-255. DOI 
[47] Yang, Y., Feng, J., Jia, L.: Stabilisation of multi-agent systems over finite fields based on high-order fully actuated system approaches. Int. J. Syst. Sci. 55 (2024), 12, 2478-2493. DOI  | MR 4781809
[48] Zhang, D., Liu, G., Cao, L.: Coordinated control of high-order fully actuated multiagent systems and its application: A predictive control strategy. IEEE/ASME Trans. Mechatronics 27 (2022), 6, 4362-4372. DOI 
[49] Zhang, D., Liu, G., Cao, L.: Proportional integral predictive control of high-order fully actuated networked multiagent systems with communication delays. IEEE Trans. Syst. Man Cybern.: Syst. 53 (2022), 2, 801-812. DOI 
[50] Zhang, D., Liu, G., Cao, L.: Constrained cooperative control for high-order fully actuated multiagent systems with application to air-bearing spacecraft simulators. IEEE/ASME Trans. Mechatron. 28 (2023), 3, 1570-1581. DOI 
Partner of
EuDML logo