[1] Abramowitz, M., Stegun, I.A.: 
Handbook of Mathematical functions with formulas, Graphs and Matematical Tables. Dorer Publications Inc., New York, 1965. 
MR 0415956[2] Aktaş, İ.: On partial sums of normalized error functions. GÜFBED/GUSTIJ 9 (3) (2019), 501–504.
[4] Alexander, J.W.: 
Functions which map the interior of the unit circle upon simple regions. Ann. of Math. 17 (1915), 12–22. 
DOI 10.2307/2007212 | 
MR 1503516[6] C. Ramachandran, L. Vanitha, Kanas, S.: 
Certain results on $q$-starlike and $q$-convex error functions. Math. Slovaca 68 (2018), 361–368. 
DOI 10.1515/ms-2017-0107 | 
MR 3783390[7] Coman, D.: 
The radius of starlikeness for error function. Stud. Univ. Babes-Bolyai Math. 36 (1991), 13–16. 
MR 1280904[8] Din, M., Raza, M., Yagmur, N., Malik, S.N.: 
On partial sums of Wright functions. U.P.B. Sci. Bull., Series A 80 (2) (2018), 79–90. 
MR 3819389[10] Frasin, B.A.: 
Partial sums of certain analytic and univalent functions. Acta Mathematica Academiae Paedagogicae Nyí regyháziensis 21 (2) (2005), 135–145. 
MR 2162609[12] Frasin, B.A., Cotîrlă, L.-I.: 
Partial sums of the normalized Le Roy-Type Mittag-Leffler function. Axioms (2075-1680). 12 (5) (2023), 12 p. 
DOI 10.3390/axioms12050441[13] Frasin, B.A, Murugusundaramoorthy, G.: 
Partial sum of certain analytic functions. Mathematica 5 3 (76) (2011), 131–142. 
MR 2933022[14] Goodman, A.W.: 
Univalent Functions. Vol. I. Mariner Publishing Company, Inc., Tampa, FL, 1983. 
MR 0704184[15] Kazımoğlu, S.: Partial sums of the Miller-Ross function. Turkish J. Sci. 6 (3) (2021), 167–173.
[17] Mohammed, N.H., Cho, N.E., Adegani, E.A., Bulboaca, T.: 
Geometric properties of normalized imaginary error function. Stud. Univ. Babeş-Bolyai Math. 67 (2) (2022), 455–462. 
DOI 10.24193/subbmath.2022.2.19 | 
MR 4438586[18] Orhan, H., Gunes, E.: 
Neighborhoods and partial sums of analytic functions based on Gaussian hypergeometric functions. Indian J. Math. 51 (3) (2009), 489–510. 
MR 2573800[22] Silvia, E.M.: 
On partial sums of convex functions of order $\alpha $. Houston J. Math. 11 (1985), 397–404. 
MR 0808655