Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
normalizer; density; finite group
Summary:
A group $G$ is said to have dense normalizers if every nonempty open interval in its subgroup lattice $L(G)$ contains the normalizer of a certain subgroup of $G$. We find all finite groups satisfying this property. We also classify the finite groups, in which $k$ subgroups are not normalizers for $k=1,2,3,4$.
References:
[1] Calhoun, W. C.: Counting subgroups of some finite groups. Am. Math. Mon. 94 (1987), 54-59. DOI 10.1080/00029890.1987.12000593 | MR 0873605 | Zbl 1303.20024
[2] Cheng, K. N., Deaconescu, M., Lang, M. L., Shi, W.: Corrigendum and addendum to ``Classification of finite groups with all elements of prime order''. Proc. Am. Math. Soc. 117 (1993), 1205-1207. DOI 10.1090/S0002-9939-1993-1116270-7 | MR 1116270 | Zbl 0787.20014
[3] Deaconescu, M.: Classification of finite groups with all elements of prime order. Proc. Am. Math. Soc. 106 (1989), 625-629. DOI 10.1090/S0002-9939-1989-0969518-2 | MR 0969518 | Zbl 0683.20020
[4] Galoppo, A.: Groups with dense normal-by-finite subgroups. Ric. Mat. 46 (1997), 45-48. MR 1615711 | Zbl 0949.20027
[5] Galoppo, A.: Groups with dense nearly normal subgroups. Note Mat. 20 (2001), 15-18. DOI 10.1285/i15900932v20n2p15 | MR 1897590 | Zbl 1147.20304
[6] Giovanni, F. de, Russo, A.: Groups with dense subnormal subgroups. Rend. Semin. Mat. Univ. Padova 101 (1999), 19-27. MR 1705276 | Zbl 0936.20023
[7] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134. Springer, Berlin (1967), German. DOI 10.1007/978-3-642-64981-3 | MR 0224703 | Zbl 0217.07201
[8] Malinowska, I. A.: Finite groups with few normalizers or involutions. Arch. Math. 112 (2019), 459-465. DOI 10.1007/s00013-018-1290-x | MR 3943466 | Zbl 1444.20009
[9] Mann, A.: Groups with dense normal subgroups. Isr. J. Math. 6 (1968), 13-25. DOI 10.1007/BF02771600 | MR 0232859 | Zbl 0155.05003
[10] Pérez-Ramos, M. D.: Groups with two normalizers. Arch. Math. 50 (1988), 199-203. DOI 10.1007/BF01187733 | MR 0933911 | Zbl 0634.20011
[11] Schmidt, R.: Subgroup Lattices of Groups. De Gruyter Expositions in Mathematics 14. Walter De Gruyter, Berlin (1994). DOI 10.1515/9783110868647 | MR 1292462 | Zbl 0843.20003
[12] Suzuki, M.: Group Theory. I. Grundlehren der Mathematischen Wissenschaften 247. Springer, Berlin (1982). MR 0648772 | Zbl 0472.20001
[13] Suzuki, M.: Group Theory. II. Grundlehren der Mathematischen Wissenschaften 248. Springer, Berlin (1986). DOI 10.1007/978-3-642-86885-6 | MR 0815926 | Zbl 0586.20001
[14] Vincenzi, G.: Groups with dense pronormal subgroups. Ric. Mat. 40 (1991), 75-79. MR 1191887 | Zbl 0754.20011
[15] Zarrin, M.: On groups with a finite number of normalisers. Bull. Aust. Math. Soc. 86 (2012), 416-423. DOI 10.1017/S000497271200007X | MR 2995893 | Zbl 1281.20032
[16] Zarrin, M.: On solubility of groups with few normalisers. Bull. Aust. Math. Soc. 90 (2014), 247-249. DOI 10.1017/S000497271400015X | MR 3252007 | Zbl 1303.20039
Partner of
EuDML logo