[3] Group, GAP:
GAP -- Groups, Algorithms, Programming: A System for Computational Discrete Algebra, Version 4.12.2. Available at
https://www.gap-system.org/ (2022).
[4] Haghi, E., Ashrafi, A. R.:
On the number of cyclic subgroups in a finite group. Southeast Asian Bull. Math. 42 (2018), 865-873.
MR 3888035 |
Zbl 1424.20026
[5] Hampejs, M., Holighaus, N., Tóth, L., Wiesmeyr, C.:
Representing and counting the subgroups of the group $\Bbb Z_m \times \Bbb Z_n$. J. Numbers 2014 (2014), Article ID 491428, 6 pages.
DOI 10.1155/2014/491428 |
Zbl 1423.11172
[16] Tóth, L.:
On the number of cyclic subgroups of a finite Abelian group. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55 (2012), 423-428.
MR 2963406 |
Zbl 1274.20047