Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
finite group; $m$-cyclic group; cyclic subgroup
Summary:
A finite group $G$ is called an $m$-cyclic group if it has exactly $m$ cyclic subgroups (including the identity subgroup). For $2\leq m\leq 12$, the $m$-cyclic groups have been classified in a series of papers. We push the above research work further to classify the finite \hbox {13-cyclic} groups, which could be considered as a step to answer the open problem posed by M. Tărnăuceanu (2015). The detailed structure of many groups of ``small'' orders is also analyzed. The following main theorem is proved: Let $G$ be a finite 13-cyclic group. Then $|\pi (G)|\leq 2$, and one of the following holds: \begin {itemize} \item [(1)] $|\pi (G)|=1$, $G\cong Q_{32},{\bf Z}_{11}\times {\bf Z}_{11}$ or ${\bf Z}_{p^{12}}$ with $p$ a prime. \item [(2)] $|\pi (G)|=2$, $G\cong D_{22}$, ${\rm SL}(2, 3)$, ${\bf Z}_{11}: {\bf Z}_{5}$, ${\bf Z}_7 : {\bf Z}_8$, ${\bf Z}_7 : {\bf Z}_{27}$, ${\bf Z}_5 : {\bf Z}_{16}$, or ${\bf Z}_3 : {\bf Z}_{32}$. \end {itemize}
References:
[1] Ashrafi, A. R., Haghi, E.: On $n$-cyclic groups. Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 3233-3246. DOI 10.1007/s40840-018-0656-3 | MR 3999087 | Zbl 1480.20059
[2] Belshoff, R., Dillstrom, J., Reid, L.: Finite groups with a prescribed number of cyclic subgroups. Commun. Algebra 47 (2019), 1043-1056. DOI 10.1080/00927872.2018.1499923 | MR 3938537 | Zbl 1472.20049
[3] Group, GAP: GAP -- Groups, Algorithms, Programming: A System for Computational Discrete Algebra, Version 4.12.2. Available at https://www.gap-system.org/ (2022).
[4] Haghi, E., Ashrafi, A. R.: On the number of cyclic subgroups in a finite group. Southeast Asian Bull. Math. 42 (2018), 865-873. MR 3888035 | Zbl 1424.20026
[5] Hampejs, M., Holighaus, N., Tóth, L., Wiesmeyr, C.: Representing and counting the subgroups of the group $\Bbb Z_m \times \Bbb Z_n$. J. Numbers 2014 (2014), Article ID 491428, 6 pages. DOI 10.1155/2014/491428 | Zbl 1423.11172
[6] Kalra, H.: Finite groups with specific number of cyclic subgroups. Proc. Indian Acad. Sci., Math. Sci. 129 (2019), Article ID 52, 10 pages. DOI 10.1007/s12044-019-0490-z | MR 3963822 | Zbl 1515.20122
[7] Li, C. H., Qiao, S.: Finite groups of fourth-power free order. J. Group Theory 16 (2013), 275-298. DOI 10.1515/jgt-2012-0042 | MR 3031875 | Zbl 1278.20023
[8] Qiao, S., Li, C. H.: The finite groups of cube-free order. J. Algebra 334 (2011), 101-108. DOI 10.1016/j.jalgebra.2011.02.040 | MR 2787655 | Zbl 1234.20027
[9] Richards, I. M.: A remark on the number of cyclic subgroups of a finite group. Am. Math. Mon. 91 (1984), 571-572. DOI 10.1080/00029890.1984.11971498 | MR 0764798
[10] Sharma, K., Reddy, A. S.: Groups having 11 or 12 cyclic subgroups. Available at https://arxiv.org/abs/2210.11788 (2023), 26 pages. DOI 10.48550/arXiv.2210.11788
[11] Sharma, K., Reddy, A. S.: Groups having 11 cyclic subgroups. Int. J. Group Theory 13 (2024), 203-214. DOI 10.22108/ijgt.2023.135547.1812 | MR 4680884 | Zbl 1535.20108
[12] Suzuki, M.: Group Theory. II. Grundlehren der Mathematischen Wissenschaften 248. Springer, New York (1986). DOI 10.1007/978-3-642-86885-6 | MR 0815926 | Zbl 0586.20001
[13] Tărnăuceanu, M.: Non-CLT groups of order $pq^3$. Math. Slovaca 64 (2014), 311-314. DOI 10.2478/s12175-014-0205-y | MR 3201346 | Zbl 1349.20028
[14] Tărnăuceanu, M.: Finite groups with a certain number of cyclic subgroups. Am. Math. Mon. 122 (2015), 275-276. DOI 10.4169/amer.math.monthly.122.03.275 | MR 3327719 | Zbl 1328.20045
[15] Tărnăuceanu, M., Tóth, L.: Cyclicity degrees of finite groups. Acta Math. Hung. 145 (2015), 489-504. DOI 10.1007/s10474-015-0480-2 | MR 3325804 | Zbl 1348.20027
[16] Tóth, L.: On the number of cyclic subgroups of a finite Abelian group. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55 (2012), 423-428. MR 2963406 | Zbl 1274.20047
Partner of
EuDML logo