Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
triangulated category; colocalizing subcategory; Balmer-Favi cosupport; filtration
Summary:
Suppose $\mathcal {T}$ is a rigidly-compactly generated tensor triangulated category and $\mathcal {K}$ is a compactly generated triangulated category on which $\mathcal {T}$ acts, in the sense of Stevenson. We prove that if $\rm {Spc}(\mathcal {T}^{c})$ is Noetherian and $\mathcal {K}$ is stable, then each object in $\mathcal {K}$ has a unique functorial tower, filtered by Balmer-Favi cosupports. This is an analogy of Stevenson's work on filtrations by Balmer-Favi supports.
References:
[1] Balmer, P.: The spectrum of prime ideals in tensor triangulated categories. J. Reine Angew. Math. 588 (2005), 149-168. DOI 10.1515/crll.2005.2005.588.149 | MR 2196732 | Zbl 1080.18007
[2] Balmer, P., Favi, G.: Generalized tensor idempotents and the telescope conjecture. Proc. Lond. Math. Soc. (3) 102 (2011), 1161-1185. DOI 10.1112/plms/pdq050 | MR 2806103 | Zbl 1220.18009
[3] Barthel, T., Castellana, N., Heard, D., Sanders, B.: Cosupport in tensor triangular geometry. Available at https://arxiv.org/abs/2303.13480 (2023), 87 pages. DOI 10.48550/arXiv.2303.13480
[4] Barthel, T., Heard, D., Sanders, B.: Stratification in tensor triangular geometry with applications to spectral Mackey functors. Camb. J. Math. 11 (2023), 829-915. DOI 10.4310/CJM.2023.v11.n4.a2 | MR 4650265 | Zbl 1524.18032
[5] Benson, D., Iyengar, S. B., Krause, H.: Local cohomology and support for triangulated categories. Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 575-621. DOI 10.24033/asens.2076 | MR 2489634 | Zbl 1171.18007
[6] Benson, D., Iyengar, S. B., Krause, H.: Stratifying triangulated categories. J. Topol. 4 (2011), 641-666. DOI 10.1112/jtopol/jtr017 | MR 2832572 | Zbl 1239.18013
[7] Benson, D. J., Iyengar, S. B., Krause, H.: Colocalizing subcategories and cosupport. J. Reine Angew. Math. 673 (2012), 161-207. DOI 10.1515/CRELLE.2011.180 | MR 2999131 | Zbl 1271.18012
[8] Neeman, A.: Colocalizing subcategories of $\Bbb D(R)$. J. Reine Angew. Math. 653 (2011), 221-243. DOI 10.1515/crelle.2011.028 | MR 2794632 | Zbl 1221.13030
[9] Stevenson, G.: Support theory via actions of tensor triangulated categories. J. Reine Angew. Math. 681 (2013), 219-254. DOI 10.1515/crelle-2012-0025 | MR 3181496 | Zbl 1280.18010
[10] Stevenson, G.: Subcategories of singularity categories via tensor actions. Compos. Math. 150 (2014), 229-272. DOI 10.1112/S0010437X1300746X | MR 3177268 | Zbl 1322.18004
[11] Stevenson, G.: Filtrations via tensor actions. Int. Math. Res. Not. 2018 (2018), 2535-2558. DOI 10.1093/imrn/rnw325 | MR 3801492 | Zbl 1410.18015
[12] Verasdanis, C.: Costratification and actions of tensor-triangulated categories. Available at https://arxiv.org/abs/2211.04139 (2022), 27 pages. DOI 10.48550/arXiv.2211.04139
[13] Verasdanis, C.: Colocalizing subcategories of singularity categories. J. Algebra 662 (2025), 608-624. DOI 10.1016/j.jalgebra.2024.08.029 | MR 4795668 | Zbl 1551.18020
Partner of
EuDML logo