[1] Aggarwal, C. C., Reddy, C. K.:
Data Clustering: Algorithms and Applications (First edition). CRC Press, Taylor and Francis Group, Boca Raton, London, New York 2014.
DOI
[2] Ahmed, E., Yaqoob, I., T.Hashem, I. A., al., et:
The role of big data analytics in Internet of Things. Computer Networks 129 (2017), 2, 459-471.
DOI
[3] Alguliyev, R., Aliguliyev, R., Sukhostat, L.:
Anomaly detection in big data based on clustering. Statistics, Optim. Inform. Computing 5 (2017), 4, 325-340.
DOI
[4] Alguliyev, R., Aliguliyev, R., Bagirov, A., Karimov, R.:
Batch clustering algorithm for big data sets. In: Proc. 2016 IEEE 10th International Conference on Application of Information and Communication Technologies, IEEE Press 2016, pp. 79-82.
DOI
[5] Alguliyev, R., Aliguliyev, R., Imamverdiyev, Y., Sukhostat, L.:
An anomaly detection based on optimization. Int. J. Intell. Systems Appl. 9 (2017), 12, 87-96.
DOI
[6] Alguliyev, R., Aliguliyev, R., Imamverdiyev, Y., Sukhostat, L.:
Weighted clustering for anomaly detection in big data. Statist. Optim. Inform. Comput. 6 (2018), 2, 178-188.
DOI
[7] Alguliyev, R. M., Aliguliyev, R. M., Alakbarov, R. G.:
Constrained $k$-means algorithm for resource allocation in mobile cloudlets. Kybernetika 59 (2023), 88-109.
DOI
[8] Alguliyev, R., Aliguliyev, R., Sukhostat, L.:
Improved parallel big data clustering based on $k$-medoids and $k$-means algorithm. Probl. Inform. Technol. 15 (2024), 18-25.
DOI
[9] Alguliyev, R., Aliguliyev, R., Sukhostat, L.:
Parallel batch $k$-means for big data clustering. Comput. Industr. Engrg. 152 (2021), 107023, 1-11.
DOI
[10] Aloise, D., Deshpande, A., Hansen, P., Popat, P.:
NP-hardness of Euclidean sum-of-squares clustering. Machine Learn. 75 (2009), 2, 245-248.
DOI
[11] Amrahov, S. E., Ar, Y., Tugrul, B., Akay, B. E., Kartli, N.:
A new approach to Mergesort algorithm: Divide smart and conquer. Future Gener. Comput. Syst. 157 (2024), 330-343.
DOI
[12] Bagirov, A. M., Taheri, S., Ordin, B.:
An adaptive $k$-medians clustering algorithm. Probl. Inform. Technol. 13 (2022), 3-15.
DOI
[13] Bagirov, A. M., Ugon, J., Webb, D.:
Fast modified global $k$-means algorithm for incremental cluster construction. Pattern Recogn. 44 (2011), 866-876.
DOI
[14] Bahmani, B., Moseley, B., Vattani, A., al., et:
Scalable $k$-means++. Proc. VLDB Endowment 5 (2012), 7, 622-633.
DOI
[15] Béjar, J.: $k$-means vs mini batch $k$-means: A comparison. Technical Report, Universitat Politécnica de Catalunya, 2013.
[16] Bose, A., Munir, A., Shabani, N.: A comparative quantitative analysis of contemporary big data clustering algorithms for market segmentation in hospitality industry. 2017.
[17] Bottou, L., Bengio, Y.: Convergence properties of the $k$-means algorithm. In: Proc. 7th International Conference on Neural Information Processing Systems, MIT Press, Cambridge 1995, pp. 585-592.
[18] Bradley, P. S., Fayyad, U., Reina, C.:
Scaling clustering algorithms to large databases. In: Proc. Fourth International Conference on Knowledge Discovery and Data Mining, AAAI Press, New York 1998, pp. 9-15.
DOI
[19] Cai, X., Nie, F., Huang, H.:
Multi-view $k$-means clustering on big data. In: Proc. Twenty-Third International Joint Conference on Artificial Intelligence, ACM Press, New York 2013, pp. 2598-2604.
DOI
[20] Catherine, A., Alejandro, C., Ricardo, F., Badih, G.:
Multivariate and functional robust fusion methods for structured big data. J. Multivar. Anal. 170 (2019), 149-161.
DOI
[21] Cetin, P., Tanriöver, Ö. Ö.:
Priority rule for resource constrained project planning problem with predetermined work package durations. J. Fac. Engrg. Architect. Gazi University 35 (2020), 3, 149-161.
DOI
[22] Chen, C. L. P., Zhang, C.-Y.:
Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inform. Sci. 275 (2014), 314-347.
DOI
[23] Cui, X., Zhu, P., Yang, X., al., et:
Optimized big data k-means clustering using MapReduce. J. Supercomput. 70 (2014), 3, 1249-1259.
DOI
[24] Dua, D., Taniskidou, E. Karra: UCI Machine Learning Repository. Irvine, Univ. California, School of Information and Computer Science, 2017.
[25] Fahad, A., Alshatri, N., Tari, Z., al., et:
A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans. Emerging Topics Computing 2 (2014), 3, 267-279.
DOI
[26] Ghadiri, N., Ghaffari, M., Nikbakht, M. A.:
BigFCM: Fast, precise and scalable FCM on Hadoop. Future Gener. Computer Syst. 77 (2018), 29-39.
DOI
[27] Hadian, A., Shahrivari, S.:
High performance parallel $k$-means clustering for disk-resident datasets on multi-core CPUs. J. Supercomput. 69 (2014), 2, 845-863.
DOI
[28] Haibo, L., Zhi, W.:
Application of an intelligent early-warning method based on DBSCAN clustering for drilling overflow accident. Cluster Comput. (2019).
DOI
[29] Han, J., Kamber, M., Pei, J.:
Data Mining: Concepts and Techniques (Third edition). Morgan Kaufmann, 2011.
DOI
[30] Hassan, I.:
$I-k$-means-+: an iterative clustering algorithm based on an enhanced version of the $k$-means. Pattern Recogn. 79 (2018), 402-413.
DOI
[31] Hathaway, R. J., Bezdek, J.C ., Huband, J. M.:
Scalable visual assessment of cluster tendency for large data sets. Patt. Recog. 39 (2006), 7, 1315-1324.
DOI
[32] Havens, T. C., Bezdek, J. C.:
An efficient formulation of the improved visual assessment of cluster tendency (iVAT) algorithm. IEEE Trans. Knowl. Data Engrg. 24 (2012), 5, 813-822.
DOI
[33] Havens, T. C., Bezdek, J. C., Palaniswami, M.:
Scalable single linkage hierarchical clustering for big data. In: Proc. 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, IEEE Press 2013. pp. 396-401.
DOI
[34] Hilbert, M., López, P.:
The world's technological capacity to store, communicate, and compute information. Science 332 (2011), 6025, 60-65.
DOI
[35] Ilango, S. S., Vimal, S., Kaliappan, M., Subbulakshmi, P.:
Optimization using Artificial Bee Colony based clustering approach for big data. Cluster Comput. (2019).
DOI
[36] Imamverdiyev, Y., Abdullayeva, F.:
Deep learning method for DoS attack detection based on restricted Boltzmann machine. Big Data 6 (2018), 2, 159-169.
DOI
[37] Karmitsa, N., Bagirov, A. M., Taheri, S.:
New diagonal bundle method for clustering problems in large data sets. European J. Oper. Res. 263 (2017), 2, 367-379.
DOI
[38] Karmitsa, N., Bagirov, A. M., Taheri, S.:
Clustering in large data sets with the limited memory bundle method. Pattern Recogn. 83 (2018), 245-249.
DOI
[39] Kumar, D., Bezdek, J. C., Palaniswami, M., al., et:
A hybrid approach to clustering in big data. IEEE Trans. Cybernet. 46 (2016), 10, 2372-2385.
DOI
[40] Lloyd, S.:
Least squares quantization in PCM. IEEE Trans. Inform. Theory 28 (1982), 2, 129-137.
DOI
[41] MacQueen, J. B.:
Some methods for classification and analysis of multivariate observations. In: Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, Berkeley, University of California Press, 1967, pp. 281-297.
Zbl 0214.46201
[42] Marjani, M., Nasaruddin, F., Gani, A., al., et:
Big IoT data analytics: architecture, opportunities, and open research challenges. IEEE Access 5 (2017), 5247-5261.
DOI
[43] Newling, J., Fleuret, F.:
Nested mini-batch $k$-means. In: Proc. 30th International Conference on Neural Information Processing Systems, Curran Associates Inc. 2016, pp. 1360-1368.
DOI
[44] Peng, K., Leung, V. C. M., Huang, Q.:
Clustering approach based on mini batch $k$-means for intrusion detection system over big data. IEEE Access 6 (2018), 11897-11906.
DOI
[45] Sabo, M.:
Consensus clustering with differential evolution. Kybernetika 50 (2014), 661-678.
DOI
[46] Saini, A., Minocha, J., Ubriani, J., Sharma, D.:
New approach for clustering of big data: disk-means. In: Proc. International Conference on Computing, Communication and Automation, IEEE Press, 2016, pp. 122-126.
DOI
[47] Sculley, D.:
Web-scale $k$-means clustering. In: Proc. 19th International Conference on World Wide Web, ACM Press, New York 2010, pp. 1177-1178.
DOI
[48] Shirkhorshidi, A. S., Aghabozorgi, S., Wah, T. Y., Herawan, T.:
Big data clustering: a review. In: Proc. International Conference on Computational Science and its Applications, LNCS 8583, Part V, Springer 2014, pp. 707-720.
DOI
[49] Sun, Z., Wang, P. P.:
A mathematical foundation of big data. New Math. Natur. Comput. 13 (2017), 2, 83-99.
DOI
[50] Tong, Q., Li, X., Yuan, B.:
Efficient distributed clustering using boundary information. Neurocomput. 275 (2018), 2355-2366.
DOI
[51] Torra, V., Endo, Y., Miyamoto, S.: On the comparison of some fuzzy clustering methods for privacy preserving data mining: towards the development of specific information loss measures. Kybernetika 45 (2009), 548-560.
[52] Tsai, C.-W., Liu, S.-J., Wang, Y.-C.:
A parallel metaheuristic data clustering framework for cloud. J. Parallel Distribut. Comput. 116 (2018), 39-49.
DOI
[53] Xu, R., Wunsch, D.:
Survey of clustering algorithms. IEEE Trans. Neural Networks 16 (2005, 3, 645-678.
DOI
[54] Zhang, Q., Yang, L. T., Chen, Z., Li, P.:
High-order possibilistic $c$-means algorithms based on tensor decompositions for big data in IoT. Inform. Fusion 39 (2018), 72-80.
DOI
[55] Zhao, W.-L., Deng, C.-H., Ngo, C.-W.:
$k$-means: a revisit. Neurocomput. 291 (2018), 195-206.
DOI