Previous |  Up |  Next

Article

Keywords:
Kurzweil-Henstock integral; anticipative integral; non-stochastic
Summary:
Motivated by the study of anticipating stochastic integrals using Kurzweil-Henstock approach, we use anticipating interval-point pairs (with the tag as the right-end point of the interval) in studying non-stochastic integral, which we call the Kurzweil-Henstock anticipating non-stochastic integral. We prove the integration-by-parts and integration-by-substitution results, the convergence theorems using our new setting. Using the convergence theorems, we show that the Kurzweil-Henstock's anticipating non-stochastic integral is equivalent to the Lebesgue integral.
References:
[1] Bartle, R. G., Sherbert, D. R.: Introduction to Real Analysis. John Wiley & Sons, New York (1992). MR 1135107 | Zbl 0810.26001
[2] Chew, T.-S., Huang, Z., Wang, C. S.: The non-uniform Riemann approach to anticipating stochastic integrals. Stochastic Anal. Appl. 22 (2004), 429-442. DOI 10.1081/SAP-120028598 | MR 2037380 | Zbl 1056.60062
[3] Chew, T.-S., Tay, J.-Y., Toh, T.-L.: The non-uniform Riemann approach to Itô's integral. Real Anal. Exch. 27 (2002), 495-514. DOI 10.14321/realanalexch.27.2.0495 | MR 1922665 | Zbl 1067.60025
[4] Lebesgue, H. L.: Leçons sur l'intégration et la recherche des fonctions primitives. Gauthier-Villars, Paris (1904), French \99999JFM99999 35.0377.01.
[5] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific, London (1989). MR 1050957 | Zbl 0699.26004
[6] Lee, P. Y., Výborný, R.: The Integral: An Easy Approach After Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14. Cambridge University Press, Cambridge (2000). MR 1756319 | Zbl 0941.26003
[7] Lim, C. Y. Y., Toh, T. L.: A note on Henstock-Itô's non-stochastic integral. Real Anal. Exch. 47 (2022), 443-460. DOI 10.14321/realanalexch.47.2.1637314733 | MR 4551045 | Zbl 07685114
[8] Riemann, B.: Collected Papers. Kendrick Press, Heber City (2004). MR 2121437 | Zbl 1101.01013
[9] Toh, T.-L., Chew, T. S.: A variational approach to Itô's intgegral. Trends in Probability and Related Analysis World Scientific, Singapore (1999), 291-299. MR 1819215 | Zbl 0981.60054
[10] Toh, T.-L., Chew, T.-S.: The Riemann approach to stochastic integration using non-uniform meshes. J. Math. Anal. Appl. 280 (2003), 133-147 \99999DOI99999 10.1016/S0022-247X(03)00059-3 . DOI 10.1016/S0022-247X(03)00059-3 | MR 1972197 | Zbl 1022.60055
[11] Toh, T.-L., Chew, T.-S.: Henstock's multiple Wiener integral and Henstock's version of Hu-Meyer theorem. Math. Comput. Modelling 42 (2005), 139-149. DOI 10.1016/j.mcm.2004.03.008 | MR 2162393 | Zbl 1084.60523
[12] Toh, T.-L., Chew, T.-S.: On belated differentiation and a characterisation of Henstock-Kurzweil-Itô integrable processes. Math. Bohem. 130 (2005), 63-72. DOI 10.21136/MB.2005.134223 | MR 2128359 | Zbl 1112.26012
[13] Toh, T.-L., Chew, T.-S.: On Itô-Kurzweil-Henstock integral and integration-by-parts formula. Czech. Math. J. 55 (2005), 653-663. DOI 10.1007/s10587-005-0052-7 | MR 2153089 | Zbl 1081.26005
[14] Toh, T. L., Chew, T. S.: Henstock's version of Itô's formula. Real Anal. Exch. 35 (2010), 375-389. DOI 10.14321/realanalexch.35.2.0375 | MR 2683604 | Zbl 1221.26015
[15] Toh, T.-L., Chew, T.-S.: The Kurzweil-Henstock theory of stochastic integration. Czech. Math. J. 62 (2012), 829-848. DOI 10.1007/s10587-012-0048-z | MR 2984637 | Zbl 1265.26020
[16] Yang, H., Toh, T. L.: On Henstock method to Stratonovich integral with respect to continuous semimartingale. Int. J. Stoch. Anal. 2014 (2014), Article ID 534864, 7 pages. DOI 10.1155/2014/534864 | MR 3293832 | Zbl 1325.60082
[17] Yang, H., Toh, T. L.: On Henstock-Kurzweil method to Stratonovich integral. Math. Bohem. 141 (2016), 129-142. DOI 10.21136/MB.2016.11 | MR 3499780 | Zbl 1389.26016
Partner of
EuDML logo