| Title: | A new numerical method for solving neuro-cognitive models via Chebyshev deep neural network (CDNN) (English) |
| Author: | Mohammadi, Kimia Mohammadi |
| Author: | Babaei, Maryam |
| Author: | Hajimohammadi, Zeinab |
| Author: | Parand, Kourosh |
| Language: | English |
| Journal: | Applications of Mathematics |
| ISSN: | 0862-7940 (print) |
| ISSN: | 1572-9109 (online) |
| Volume: | 70 |
| Issue: | 4 |
| Year: | 2025 |
| Pages: | 517-535 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | One of the fundamental applications of artificial neural networks is solving Partial Differential Equations (PDEs) which has been considered in this paper. We have created an effective method by combining the spectral methods and multi-layer perceptron to solve Generalized Fitzhugh-Nagumo (GFHN) equation. In this method, we have used Chebyshev polynomials as activation functions of the multi-layer perceptron. In order to solve PDEs, independent variables, which are collocation points, have been used as input dataset. Furthermore, the loss function has been constructed from the residual of the equation and its boundary condition. Minimizing the loss function has adjusted the appropriate values for the parameters of the network. Hence, the network has shown an outstanding performance not only on the training dataset but also on the unseen data. Some numerical examples and a comparison between the results of our proposed method and other existing approaches have been provided to show the efficiency and accuracy of the proposed method. For this purpose different cases such as linear, nonlinear and multi dimensional equations are considered. (English) |
| Keyword: | partial differential equation (PDE) |
| Keyword: | generalized Fitzhugh-Nagumo (GFHN) |
| Keyword: | Chebyshev polynomial |
| Keyword: | numerical approach |
| Keyword: | neural network |
| Keyword: | deep learning |
| MSC: | 33C45 |
| MSC: | 68t07 |
| MSC: | 92B20 |
| DOI: | 10.21136/AM.2025.0082-24 |
| . | |
| Date available: | 2025-10-03T11:43:47Z |
| Last updated: | 2025-10-06 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153091 |
| . | |
| Reference: | [1] Abbasbandy, S.: Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method.Appl. Math. Modelling 32 (2008), 2706-2714. Zbl 1167.35395, MR 2456314, 10.1016/j.apm.2007.09.019 |
| Reference: | [2] Babaei, M., Aghaei, A. A., Kazemi, Z., Jamshidi, M., Ghaderi, R., Parand, K.: Solving a class of Thomas-Fermi equations: A new solution concept based on physics-informed machine learning.Math. Comput. Simul. 225 (2024), 716-730. Zbl 08030564, MR 4761356, 10.1016/j.matcom.2024.06.009 |
| Reference: | [3] Babaei, M., Mohammadi, K. M., Hajimohammadi, Z., Parand, K.: JDNN: Jacobi deep neural network for solving telegraph equation.Available at https://arxiv.org/abs/2212.12700 (2022), 17 pages. 10.48550/arXiv.2212.12700 |
| Reference: | [4] Bär, M., Gottschalk, N., Eiswirth, M., Ertl, G.: Spiral waves in a surface reaction: Model calculations.J. Chem. Phys. 100 (1994), 1202-1214. 10.1063/1.466650 |
| Reference: | [5] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., Siskind, J. M.: Automatic differentiation in machine learning: A survey.J. Mach. Learn. Res. 18 (2017), Article ID 153, 43 pages. Zbl 06982909, MR 3800512 |
| Reference: | [6] Bhrawy, A. H.: A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients.Appl. Math. Comput. 222 (2013), 255-264. Zbl 1329.65234, MR 3115866, 10.1016/j.amc.2013.07.056 |
| Reference: | [7] Dehghan, M., Heris, J. M., Saadatmandi, A.: Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses.Math. Methods Appl. Sci. 33 (2010), 1384-1398. Zbl 1196.35025, MR 2674780, 10.1002/mma.1329 |
| Reference: | [8] Elbarbary, E. M. E., El-Kady, M.: Chebyshev finite difference approximation for the boundary value problems.Appl. Math. Comput. 139 (2003), 513-523. Zbl 1027.65098, MR 1948656, 10.1016/S0096-3003(02)00214-X |
| Reference: | [9] Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning.Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016). Zbl 1373.68009, MR 3617773 |
| Reference: | [10] Hadian-Rasanan, A. H., Rahmati, D., Gorgin, S., Parand, K.: A single layer fractional orthogonal neural network for solving various types of Lane-Emden equation.New Astronomy 75 (2020), Article D 101307, 14 pages. 10.1016/j.newast.2019.101307 |
| Reference: | [11] Hajimohammadi, Z., Baharifard, F., Ghodsi, A., Parand, K.: Fractional Chebyshev deep neural network (FCDNN) for solving differential models.Chaos Solitons Fractals 153 (2021), Article ID 111530, 15 pages. Zbl 1498.35575, MR 4343625, 10.1016/j.chaos.2021.111530 |
| Reference: | [12] J. Han, A. Jentzen, W. E: Solving high-dimensional partial differential equations using deep learning.Proc. Natl. Acad. Sci. USA 115 (2018), 8505-8510. Zbl 1416.35137, MR 3847747, 10.1073/pnas.1718942115 |
| Reference: | [13] İnan, B.: A finite difference method for solving generalized FitzHugh-Nagumo equation.AIP Conf. Proc. 1926 (2018), Article ID 020018, 8 pages. Zbl 1469.65132, 10.1063/1.5020467 |
| Reference: | [14] Jiwari, R., Gupta, R. K., Kumar, V.: Polynomial differential quadrature method for numerical solutions of the generalized Fitzhugh-Nagumo equation with time-dependent coefficients.Ain Shams Eng. J. 5 (2014), 1343-1350. 10.1016/j.asej.2014.06.005 |
| Reference: | [15] Jones, D. S., Plank, M. J., Sleeman, B. D.: Differential Equations and Mathematical Biology.Chapman & Hall/CRC Mathematical and Computational Biology Series. CRC Press, Boca Raton (2010). Zbl 1298.92003, MR 2573923, 10.4324/9780203009314 |
| Reference: | [16] Kawahara, T., Tanaka, M.: Interactions of traveling fronts: An exact solution of a nonlinear diffusion equation.Phys. Lett., A 97 (1983), 311-314. MR 0719496, 10.1016/0375-9601(83)90648-5 |
| Reference: | [17] Keener, J., Sneyd, J.: Mathematical Physiology.Interdisciplinary Applied Mathematics 8. Springer, New York (1998). Zbl 0913.92009, MR 1673204, 10.1007/b98841 |
| Reference: | [18] Khater, A. H., Temsah, R. S.: Numerical solutions of some nonlinear evolution equations by Chebyshev spectral collocation methods.Int. J. Comput. Math. 84 (2007), 305-316. Zbl 1117.65142, MR 2323728, 10.1080/00207160601138863 |
| Reference: | [19] Khoee, A. G., Mohammadi, K. M., Jani, M., Parand, K.: A least squares support vector regression for anisotropic diffusion filtering.Available at https://arxiv.org/abs/2202.00595 (2022), 18 pages. 10.48550/arXiv.2202.00595 |
| Reference: | [20] Kingma, D. P., Ba, J.: Adam: A method for stochastic optimization.Available at https://arxiv.org/abs/1412.6980 (2014), 15 pages. 10.48550/arXiv.1412.6980 |
| Reference: | [21] Liu, D. C., Nocedal, J.: On the limited memory BFGS method for large scale optimization.Math. Program., Ser. B 45 (1989), 503-528. Zbl 0696.90048, MR 1038245, 10.1007/BF01589116 |
| Reference: | [22] Long, Z., Lu, Y., Dong, B.: PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network.J. Comput. Phys. 399 (2019), Article ID 108925, 17 pages. Zbl 1454.65131, MR 4013148, 10.1016/j.jcp.2019.108925 |
| Reference: | [23] Lu, L., Meng, X., Mao, Z., Karniadakis, G. E.: DeepXDE: A deep learning library for solving differential equations.SIAM Rev. 63 (2021), 208-228. Zbl 1459.65002, MR 4209661, 10.1137/19M1274067 |
| Reference: | [24] Mai-Duy, N., Tanner, R. I.: A spectral collocation method based on integrated Chebyshev polynomials for two-dimensional biharmonic boundary-value problems.J. Comput. Appl. Math. 201 (2007), 30-47. Zbl 1110.65112, MR 2293536, 10.1016/j.cam.2006.01.030 |
| Reference: | [25] Nucci, M. C., Clarkson, P. A.: The nonclassical method is more general than the direct method for symmetry reductions: An example of the Fitzhugh-Nagumo equation.Phys. Lett., A 164 (1992), 49-56. MR 1162061, 10.1016/0375-9601(92)90904-Z |
| Reference: | [26] Pang, G., Lu, L., Karniadakis, G. E.: fPINNs: Fractional physics-informed neural networks.SIAM J. Sci. Comput. 41 (2019), A2603--A2626. Zbl 1420.35459, MR 3995303, 10.1137/18M1229845 |
| Reference: | [27] Parand, K., Moayeri, M. M., Latifi, S., Delkhosh, M.: A numerical investigation of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet via rational Chebyshev functions.Eur. Phys. J. Plus 132 (2017), Article ID 325, 11 pages. 10.1140/epjp/i2017-11600-0 |
| Reference: | [28] Parand, K., Razzaghi, M.: Rational Chebyshev tau method for solving Volterra's population model.Appl. Math. Comput. 149 (2004), 893-900. Zbl 1038.65149, MR 2033170, 10.1016/j.amc.2003.09.006 |
| Reference: | [29] Raissi, M., Perdikaris, P., Karniadakis, G. E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.J. Comput. Phys. 378 (2019), 686-707. Zbl 1415.68175, MR 3881695, 10.1016/j.jcp.2018.10.045 |
| Reference: | [30] Rivlin, T. J.: Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory.Dover, New York (2020). Zbl 1458.41001, MR 4878071 |
| Reference: | [31] Shih, M., Momoniat, E., Mahomed, F. M.: Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh-Nagumo equation.J. Math. Phys. 46 (2005), Article ID 023503, 10 pages. Zbl 1076.35052, MR 2121716, 10.1063/1.1839276 |
| Reference: | [32] Triki, H., Wazwaz, A.-M.: On soliton solutions for the Fitzhugh-Nagumo equation with time-dependent coefficients.Appl. Math. Modelling 37 (2013), 3821-3828. Zbl 1291.35266, MR 3020534, 10.1016/j.apm.2012.07.031 |
| . |
Fulltext not available (moving wall 24 months)