Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
multiobjective optimization; Pareto optimality; conjugate gradient method; backtracking line search; Armijo condition
Summary:
We propose a weighted HS (Hestenes-Stiefel)-FR (Fletcher-Reeves) hybrid conjugate gradient method for unconstrained multiobjective optimization problem, in which a new positive coefficient of the multiobjective steepest descent direction is adaptively updated to keep its positiveness. The method takes advantage of a weighted hybrid of our modified HS and FR parameters and under the Armijo-type backtracking line search, it has global convergence to a Pareto critical point (point satisfying the first-order necessary condition for Pareto optimality) without convexity assumption on the objectives. Numerical experiments show that the practical performance of the method is competitive with the existing methods such as conjugate gradient method, steepest descent method, Newton method, and quasi-Newton method for unconstrained multiobjective optimization.
References:
[1] Ansary, M. A. T., Panda, G.: A modified quasi-Newton method for vector optimization problem. Optimization 64 (2015), 2289-2306. DOI 10.1080/02331934.2014.947500 | MR 3391220 | Zbl 1327.90275
[2] Bandyopadhyay, S., Pal, S. K., Aruna, B.: Multiobjective GAs, quantitative indices, and pattern classification. IEEE Trans. Syst. Man Cybern., Part B 34 (2004), 2088-2099. DOI 10.1109/TSMCB.2004.834438
[3] Cabrera-Guerrero, G., Lagos, C.: Comparing multi-objective local search algorithms for the beam angle selection problem. Mathematics 10 (2022), Article ID 159, 25 pages. DOI 10.3390/math10010159
[4] Chuong, T. D., Mordukhovich, B. S., Yao, J.-C.: Hybrid approximate proximal algorithms for efficient solutions in vector optimization. J. Nonlinear Convex Anal. 12 (2011), 257-286. MR 2858309 | Zbl 1223.49033
[5] Coello, C. A. Coello, Lamont, G. B., Veldhuizen, D. A. Van: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, New York (2007). DOI 10.1007/978-0-387-36797-2 | MR 2350880 | Zbl 1142.90029
[6] Denysiuk, R., Gaspar-Cunha, A.: Multiobjective evolutionary algorithm based on vector angle neighborhood. Swarm Evol. Comput. 37 (2017), 45-57. DOI 10.1016/j.swevo.2017.05.005
[7] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Program. 91 (2002), 201-213. DOI 10.1007/s101070100263 | MR 1875515 | Zbl 1049.90004
[8] Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005). DOI 10.1007/3-540-27659-9 | MR 2143243 | Zbl 1132.90001
[9] Eichfelder, G.: Twenty years of continuous multiobjective optimization in the twenty-first century. EURO J. Comput. Optim. 9 (2021), Article ID 100014, 15 pages. DOI 10.1016/j.ejco.2021.100014 | MR 4397745 | Zbl 1530.90091
[10] Eichfelder, G., Kirst, P., Meng, L., Stein, O.: A general branch-and-bound framework for continuous global multiobjective optimization. J. Glob. Optim. 80 (2021), 195-227. DOI 10.1007/s10898-020-00984-y | MR 4260677 | Zbl 1470.90114
[11] Fliege, J., Drummond, L. M. G., Svaiter, B. F.: Newton's method for multiobjective optimization. SIAM J. Optim. 20 (2009), 602-626. DOI 10.1137/08071692X | MR 2515788 | Zbl 1195.90078
[12] Fliege, J., Svaiter, B. F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51 (2000), 479-494. DOI 10.1007/s001860000043 | MR 1778656 | Zbl 1054.90067
[13] Guo, Z., Ersoy, O. K., Yan, X.: A multi-objective differential evolutionary algorithm with angle-based objective space division and parameter adaption for solving sodium gluconate production process and benchmark problems. Swarm Evol. Comput. 55 (2020), Article ID 100670, 12 pages. DOI 10.1016/j.swevo.2020.100670
[14] Gupta, S., Srivastava, M.: A new scalarization function and well-posedness of vector optimization problem. Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 83 (2021), 177-192. MR 4407132 | Zbl 1513.49055
[15] Handl, J., Kell, D. B., Knowles, J.: Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Trans. Comput. Biolog. Bioinf. 4 (2007), 279-290. DOI 10.1109/TCBB.2007.070203
[16] Jahn, J.: Vector Optimization: Theory, Applications, and Extensions. Springer, Berlin (2004). DOI 10.1007/978-3-540-24828-6 | MR 2058695 | Zbl 1055.90065
[17] Jiang, X., Na, J.: Online surrogate multiobjective optimization algorithm for contaminated groundwater remediation designs. Appl. Math. Modelling 78 (2020), 519-538. DOI 10.1016/j.apm.2019.09.053 | MR 4029067 | Zbl 1481.86005
[18] Liang, J., Xu, W., Yue, C., Yu, K., Song, H., Crisalle, O. D., Qu, B.: Multimodal multiobjective optimization with differential evolution. Swarm Evol. Comput. 44 (2019), 1028-1059. DOI 10.1016/j.swevo.2018.10.016
[19] Pérez, L. R. Lucambio, Prudente, L. F.: Nonlinear conjugate gradient methods for vector optimization. SIAM J. Optim. 28 (2018), 2690-2720. DOI 10.1137/17M1126588 | MR 3858809 | Zbl 1401.90210
[20] Marcellin, K. N., Ouattara, A., Joseph, S. K.: Multiobjective optimization of micro-gas turbines environmental polluting emissions due to their internal and external thermal losses. Am. J. Environ. Prot. 12 (2023), 1-10. DOI 10.11648/j.ajep.20231201.11
[21] Mita, K., Fukuda, E. H., Yamashita, N.: Nonmonotone line searches for unconstrained multiobjective optimization problems. J. Glob. Optim. 75 (2019), 63-90. DOI 10.1007/s10898-019-00802-0 | MR 4011712 | Zbl 1428.90155
[22] Morovati, V., Basirzadeh, H., Pourkarimi, L.: Quasi-Newton methods for multiobjective optimization problems. 4OR 16 (2018), 261-294. DOI 10.1007/s10288-017-0363-1 | MR 3845793 | Zbl 1407.90300
[23] Povalej, Ž.: Quasi-Newton's method for multiobjective optimization. J. Comput. Appl. Math. 255 (2014), 765-777. DOI 10.1016/j.cam.2013.06.045 | MR 3093459 | Zbl 1291.90316
[24] Qu, S., Goh, M., Chan, F. T. S.: Quasi-Newton methods for solving multiobjective optimization. Oper. Res. Lett. 39 (2011), 397-399. DOI 10.1016/j.orl.2011.07.008 | MR 2835535 | Zbl 1235.90139
[25] Qu, S., Goh, M., Liang, B.: Trust region methods for solving multiobjective optimization. Optim. Method Softw. 28 (2013), 796-811. DOI 10.1080/10556788.2012.660483 | MR 3175444 | Zbl 1278.90365
[26] Svaiter, B. F.: The multiobjective steepest descent direction is not Lipschitz continuous, but is Hölder continuous. Oper. Res. Lett. 46 (2018), 430-433. DOI 10.1016/j.orl.2018.05.008 | MR 3827652 | Zbl 1525.90389
[27] Thomann, J., Eichfelder, G.: A trust-region algorithm for heterogeneous multiobjective optimization. SIAM J. Optim. 29 (2019), 1017-1047. DOI 10.1137/18M1173277 | MR 3936040 | Zbl 1411.90311
[28] Villacorta, K. D. V., Oliveira, P. R., Soubeyran, A.: A trust-region method for unconstrained multiobjective problems with applications in satisficing processes. J. Optim. Theory Appl. 160 (2014), 865-889. DOI 10.1007/s10957-013-0392-7 | MR 3181000 | Zbl 1300.90045
[29] Wang, J., Hu, Y., Yu, C. K. W., Li, C., Yang, X.: Extended Newton methods for multiobjective optimization: Majorizing function technique and convergence analysis. SIAM J. Optim. 29 (2019), 2388-2421. DOI 10.1137/18M1191737 | MR 4010766 | Zbl 1422.90052
[30] Yang, N.-C., Mehmood, D.: Multi-objective bee swarm optimization algorithm with minimum Manhattan distance for passive power filter optimization problems. Mathematics 10 (2022), Article ID 133, 20 pages. DOI 10.3390/math10010133
[31] Zaaraoui, L., Mansouri, A., Smairi, N.: NMOPSO: An improved multiobjective PSO algorithm for permanent magnet motor design. U.P.B. Sci. Bull., Ser. C 84 (2022), 201-214.
Partner of
EuDML logo