Previous |  Up |  Next

Article

Title: An example Ginsburg said in 1984 he was “unable to find” and a forbidden subposet characterization of subsets of regular posets (English)
Author: Farley, Jonathan David
Language: English
Journal: Mathematica Bohemica
ISSN: 0011-4642
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 4
Year: 2025
Pages: 459-495
Summary lang: English
.
Category: math
.
Summary: In 1984, Ginsburg wrote, ``We have been unable to find an example of an ordered set $P$ having the properties of [being complete, densely ordered, with no antichain other than $\{0\}$ and $\{1\}$ that is a cutset] and in which all antichains are countable.'' In this very brief note, such an example is shown. Posets that can be embedded in regular posets are characterized as posets that do not contain $\omega \times \{0,1\}$ or its dual as a subposet. Any such poset $P$ can be embedded in a regular poset that can be embedded in any other regular poset containing $P$. (English)
Keyword: regular poset
Keyword: (minimal) cutset
Keyword: (maximal) chain
Keyword: (maximal) antichain
Keyword: lexicographic sum
Keyword: complete lattice
MSC: 06A06
DOI: 10.21136/MB.2024.0039-23
.
Date available: 2025-11-07T18:06:09Z
Last updated: 2025-11-16
Stable URL: http://hdl.handle.net/10338.dmlcz/153157
.
Reference: [1] Birkhoff, G.: Lattice Theory.AMS Colloquium Publications 25. AMS, Providence (1967). Zbl 0153.02501, MR 0227053, 10.1090/coll/025
Reference: [2] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order.Cambridge University Press, Cambridge (2002). Zbl 1002.06001, MR 1902334, 10.1017/CBO9780511809088
Reference: [3] El-Zahar, M. H., Zaguia, N.: Antichains and cutsets.Combinatorics and Ordered Sets Contemporary Mathematics 57. AMS, Providence (1986), 227-261. Zbl 0595.06003, MR 0856238, 10.1090/conm/057
Reference: [4] Farley, J. D.: Perfect sequences of chain-complete posets.Discrete Math. 167/168 (1997), 271-296. Zbl 0873.06002, MR 1446751, 10.1016/S0012-365X(96)00234-8
Reference: [5] Farley, J. D.: Cancel culture: The search for universally cancellable exponents of posets.Categ. Gen. Algebr. Struct. Appl. 19 (2023), 1-27. Zbl 7898816, MR 4650120, 10.48308/CGASA.19.1.1
Reference: [6] Ginsburg, J.: Compactness and subsets of ordered sets that meet all maximal chains.Order 1 (1984), 147-157. Zbl 0555.06001, MR 0764322, 10.1007/BF00565650
Reference: [7] Grillet, P. A.: Maximal chains and antichains.Fundam. Math. 65 (1969), 157-167. Zbl 0191.00601, MR 0244112, 10.4064/fm-65-2-157-167
Reference: [8] Higgs, D.: A companion to Grillet's theorem on maximal chains and antichains.Order 1 (1985), 371-375. Zbl 0571.06001, MR 0787548, 10.1007/BF00582742
Reference: [9] Li, B. Y.: The PT-order, minimal cutsets and Menger property.Order 6 (1989), 59-68. Zbl 0693.06001, MR 1020457, 10.1007/BF00341637
Reference: [10] Maltby, R.: When is every minimal cutset an antichain?.Acta Sci. Math. 59 (1994), 381-403. Zbl 0821.06001, MR 1317160
Reference: [11] Markowsky, G.: Chain-complete posets and directed sets with applications.Algebra Univers. 6 (1976), 53-68. Zbl 0332.06001, MR 0398913, 10.1007/BF02485815
Reference: [12] Rival, I., Zaguia, N.: Effective constructions of cutsets for finite and infinite ordered sets.Acta Sci. Math. 51 (1987), 191-207. Zbl 0629.06004, MR 0911570
Reference: [13] Schröder, B.: Ordered Sets: An Introduction with Connections from Combinatorics to Topology.Birkhäuser, Basel (2016). Zbl 1414.06001, MR 3469976, 10.1007/978-3-319-29788-0
Reference: [14] Slatinský, E.: Die arithmetische Operation der Summe.Arch. Math., Brno 20 (1984), 9-20 German. Zbl 0554.06007, MR 0785042
Reference: [15] Weihrauch, K., Schreiber, U.: Embedding metric spaces into CPO's.Theor. Comput. Sci. 16 (1981), 5-24. Zbl 0485.68040, MR 0632667, 10.1016/0304-3975(81)90027-X
.

Files

Files Size Format View
MathBohem_150-2025-4_1.pdf 459.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo