Previous |  Up |  Next

Article

Title: Positive solution for infinitely impulsive singular third-order $\phi $-Laplacian BVPs on the half line with first-order derivative dependence (English)
Author: Benmezaï, Abdelhamid
Author: Belal, Dhehbiya
Author: Bachouche, Kamal
Language: English
Journal: Mathematica Bohemica
ISSN: 0011-4642
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 4
Year: 2025
Pages: 583-607
Summary lang: English
.
Category: math
.
Summary: We are concerned in this paper with the existence of positive solutions to the $\phi $-Laplacian third-order boundary value problem $$ \begin {cases} -(\phi (u''))'(t)=f(t,u(t),u'(t))\text { for a.e. }t\in J, \\ u(0)=0,\ u'(0)=a\text {, }\lim \limits _{t\rightarrow \infty }u''(t)=0, \\ \Delta u(t_{k})=I_{1,k}(u(t_{k}),u'(t_{k})),\ k=1,2,\ldots ,\\ \Delta u'(t_{k})=I_{2,k}(u(t_{k}),u'(t_{k})),\ k=1,2,\ldots , \\ -\Delta \phi (u'')(t_{k})=I_{3,k}(u(t_{k}),u'(t_{k})),\ k=1,2,\ldots ,\end {cases}$$ where $a\geq 0,$ $J=(0,\infty )$, $0<t_{1}<t_{2}<\ldots <t_{k}\ldots $, $t_{k}\rightarrow \infty $ as $k\rightarrow \infty $, $\Delta u(t_{k})=u(t_{k}^{+})-u(t_{k}^{-})$ and $J^{\ast }=J\backslash \{t_{k}\colon k\geq 1\}$. The function $\phi \colon \mathbb {R}\rightarrow \mathbb {R}$ is an increasing homeomorphism such that $\phi (0)=0$, $I_{i,k}\in C(I^{2},[0,\infty ))$ for $i=1,2,3$ and $k\geq 1$, and the nonlinearity $f\colon J^{3}\rightarrow \mathbb {R}^{+}$ is a Caratheodory function.\\ By means of a Guo-Krasnoselskii type fixed point theorem, we prove an existence result for at least one positive solution. (English)
Keyword: BVP on infinite intervals
Keyword: $\phi $-Laplacian
Keyword: fixed point theory in cones
MSC: 34A37
MSC: 34B16
MSC: 34B18
MSC: 34B40
DOI: 10.21136/MB.2025.0081-24
.
Date available: 2025-11-07T19:30:19Z
Last updated: 2025-11-16
Stable URL: http://hdl.handle.net/10338.dmlcz/153164
.
Reference: [1] Agarwal, R. P.: Boundary Value Problems for Higher Order Differential Equations.World Scientific, Singapore (1986). Zbl 0619.34019, MR 1021979, 10.1142/0266
Reference: [2] Agarwal, R. P., O'Regan, D.: Infinite Interval Problems for Differential, Difference and Integral Equations.Kluwer Academic, Dordrecht (2001). Zbl 0988.34002, MR 1845855, 10.1007/978-94-010-0718-4
Reference: [3] Benbaziz, Z., Djebali, S.: Positive solutions for nonlinear $\phi$-Laplacian third-order impulsive differential equations on infinite intervals.J. Nonlinear Funct. Anal. 2018 (2018), Article ID 32, 19 pages. 10.23952/jnfa.2018.32
Reference: [4] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive Differential Equations and Inclusions.Contemporary Mathematics and Its Application 2. Hindawi, New York (2006). Zbl 1130.34003, MR 2322133, 10.1155/9789775945501
Reference: [5] Bernis, F., Peletier, L. A.: Two problems from draining flows involving third-order ordinary differential equations.SIAM J. Math. Anal. 27 (1996), 515-527. Zbl 0845.34033, MR 1377486, 10.1137/S0036141093260847
Reference: [6] Corduneanu, C.: Integral Equations and Stability of Feedback Systems.Mathematics in Science and Engineering 104. Academic Press, New York (1973). Zbl 0273.45001, MR 0358245, 10.1016/s0076-5392(08)x6099-0
Reference: [7] Djebali, S., Saifi, O.: Third order BVPs with $\phi$-Laplacian operators on $[0,+\infty)$.Afr. Diaspora J. Math. 16 (2013), 1-17. Zbl 1283.34019, MR 3091711
Reference: [8] Djebali, S., Saifi, O.: Upper and lower solution for $\phi$-Laplacian third-order BVPs on the half-line.Cubo 16 (2014), 105-116. Zbl 1319.34038, MR 3185792, 10.4067/S0719-06462014000100010
Reference: [9] Djebali, S., Saifi, O.: Singular $\phi$-Laplacian third-order BVPs with derivative dependence.Arch. Math., Brno 52 (2016), 35-48. Zbl 1374.34067, MR 3475111, 10.5817/AM2016-1-35
Reference: [10] Greguš, M.: Third Order Linear Differential Equations.Mathematics and Its Applications 22. Reidel, Dordrecht (1987). Zbl 0602.34005, MR 0882545, 10.1007/978-94-009-3715-4
Reference: [11] Guo, D.: Existence of two positive solutions for a class of third-order impulsive singular integro-differential equations on the half-line in Banach spaces.Bound. Value Probl. 2016 (2016), Article ID 70, 31 pages. Zbl 1383.45003, MR 3479375, 10.1186/s13661-016-0577-8
Reference: [12] Henderson, J., Luca, R.: Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions.Elsevier, Amsterdam (2016). Zbl 1353.34002, MR 3430818, 10.1016/C2014-0-04797-1
Reference: [13] Liang, S., Zhang, J.: Positive solutions for singular third-order boundary value problem with dependence on the first order derivative on the half-line.Acta Appl. Math. 111 (2010), 27-43. Zbl 1203.34038, MR 2653048, 10.1007/s10440-009-9528-z
Reference: [14] Liu, Y.: Boundary value problem for second order differential equations on unbounded domains.Acta Anal. Funct. Appl. 4 (2002), 211-216 Chinese. Zbl 1038.34030, MR 1956716
Reference: [15] Mil'man, V. D., Myškis, A. D.: On the stability of motion in the presence of impulses.Sib. Math. Zh. 1 (1960), 233-237 Russian. Zbl 1358.34022, MR 0126028
Reference: [16] Minhós, F. M., Carrasco, H.: Higher Order Boundary Value Problems on Unbounded Domains: Types of Solutions, Functional Problems and Applications.Trends in Abstract and Applied Analysis 5. World Scientific, Hackensack (2018). Zbl 1380.34002, MR 3752165, 10.1142/10448
Reference: [17] Padhi, S., Pati, S.: Theory of Third-Order Differential Equations.Springer, New Delhi (2014). Zbl 1308.34002, MR 3136420, 10.1007/978-81-322-1614-8
Reference: [18] Wang, J., Zhang, Z.: A boundary value problem from draining and coating flows involving a third-order differential equation.Z. Angew. Math. Phys. 49 (1998), 506-513. Zbl 0907.34016, MR 1629561, 10.1007/s000000050104
Reference: [19] Yang, X., Liu, Y.: Existence of unbounded solutions of boundary value problems for singular differential systems on whole line.Bound. Value Probl. 2015 (2015), Article ID 42, 39 pages. Zbl 1317.34034, MR 3315714, 10.1186/s13661-015-0300-1
Reference: [20] Deren, F. Yoruk, Hamal, N. Aykut: Second-order boundary-value problems with integral boundary conditions on the real line.Electron. J. Differ. Equ. 2014 (2014), Article ID 19, 13 pages. Zbl 1292.34017, MR 3159428
Reference: [21] Zhang, X.: Computation of positive solutions for nonlinear impulsive integral boundary value problems with $p$-Laplacian on infinite intervals.Abstr. Appl. Anal. 2013 (2013), Article ID 708281, 13 pages. Zbl 1266.65135, MR 3035186, 10.1155/2013/708281
.

Files

Files Size Format View
MathBohem_150-2025-4_7.pdf 320.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo