| Title: | The Banach algebra $L^{1}(G)$ and tame functionals (English) |
| Author: | Komisarchik, Matan |
| Language: | English |
| Journal: | Commentationes Mathematicae Universitatis Carolinae |
| ISSN: | 0010-2628 (print) |
| ISSN: | 1213-7243 (online) |
| Volume: | 65 |
| Issue: | 2 |
| Year: | 2024 |
| Pages: | 131-158 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | We give an affirmative answer to a question due to M. Megrelishvili, and show that for every locally compact group $G$ we have Tame$(L^{1}(G)) = $ Tame$(G)$, which means that a functional is tame over $L^{1}(G)$ if and only if it is tame as a function over $G$. In fact, it is proven that for every norm-saturated, convex vector bornology on RUC$_b(G)$, being small as a function and as a functional is the same. This proves that Asp$(L^{1}(G)) = $ Asp$(G)$ and reaffirms a well-known, similar result which states that WAP$(G) = $ WAP$(L^{1}(G))$. (English) |
| Keyword: | weakly almost periodicity |
| Keyword: | functional on Banach algebra |
| Keyword: | bornology |
| Keyword: | Rosenthal space |
| Keyword: | tame family |
| Keyword: | Asplund space |
| Keyword: | group algebra |
| MSC: | 43A20 |
| MSC: | 43A60 |
| MSC: | 46A17 |
| MSC: | 46H05 |
| DOI: | 10.14712/1213-7243.2025.013 |
| . | |
| Date available: | 2025-11-12T11:59:52Z |
| Last updated: | 2025-11-14 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153165 |
| . | |
| Reference: | [1] Al-Yassin J.: Representations of Banach Algebras Subordinate to Topologically Introverted Spaces.Windsor Electronic Theses and Dissertations, University of Windsor, Windsor, 2014. |
| Reference: | [2] Arens R.: Operations induced in function classes.Monatsh. Math. 55 (1951), 1–19. 10.1007/BF01300644 |
| Reference: | [3] Burckel R. B.: Weakly Almost Periodic Functions on Semigroups.Gordon and Breach Science Publishers, New York, 1970. |
| Reference: | [4] Davis W. J., Figiel T., Johnson W. B., Pełczyński A.: Factoring weakly compact operators.J. Functional Analysis 17 (1974), no. 3, 311–327. 10.1016/0022-1236(74)90044-5 |
| Reference: | [5] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR 0737004 |
| Reference: | [6] Doran R. S., Wichmann J.: Approximate Identities and Factorization in Banach Modules.Lecture Notes in Mathematics, 768, Springer, Berlin, 1979. 10.1007/BFb0098612 |
| Reference: | [7] Fabian M. J.: Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces.Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley and Sons, New York, 1997. Zbl 0883.46011 |
| Reference: | [8] Filali M., Neufang M., Sangani Monfared M.: Representations of Banach algebras subordinate to topologically introverted spaces.Trans. Amer. Math. Soc. 367 (2015), no. 11, 8033–8050. 10.1090/tran/6435 |
| Reference: | [9] Glasner E., Megrelishvili M.: Hereditarily non-sensitive dynamical systems and linear representations.Colloq. Math. 104 (2006), no. 2, 223–283. 10.4064/cm104-2-5 |
| Reference: | [10] Glasner E., Megrelishvili M.: On fixed point theorems and nonsensitivity.Israel J. Math. 190 (2012), 289–305. 10.1007/s11856-011-0192-4 |
| Reference: | [11] Glasner E., Megrelishvili M.: Representations of dynamical systems on Banach spaces not containing $l_1$.Trans. Amer. Math. Soc. 364 (2012), no. 12, 6395–6424. 10.1090/S0002-9947-2012-05549-8 |
| Reference: | [12] Glasner E., Megrelishvili M.: Representations of dynamical systems on Banach spaces.in Recent Progress in General Topology III, Atlantis Press, Paris, 2014, pages 399–470. |
| Reference: | [13] Glasner E., Megrelishvili M.: Eventual nonsensitivity and tame dynamical systems.available at arXiv:1405.2588v7 [math.DS] (2016), 45 pages. |
| Reference: | [14] Glasner E., Megrelishvili M.: More on tame dynamical systems.Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, Lecture Notes in Math., 2213, Springer, Cham, 2018, pages 351–392. |
| Reference: | [15] Hewitt E., Ross K. A.: Abstract Harmonic Analysis, Vol. II, Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups.Die Grundlehren der mathematischen Wissenschaften, 152, Springer, New York, 1970. |
| Reference: | [16] Hewitt E., Ross K. A.: Abstract Harmonic Analysis, Vol. I. Structure of Topological Groups, Integration Theory, Group Representations.Die Grundlehren der mathematischen Wissenschaften, 115, Springer, Berlin, 1979. |
| Reference: | [17] Hogbe-Nlend H.: Bornologies and Functional Analysis: Introductory Course on the Theory of Duality Topology-bornology and Its Use in Functional Analysis.North-Holland Mathematics Studies, 26, North-Holland Publishing Co., Amsterdam, 1977. |
| Reference: | [18] Jayne J. E., Orihuela J., Pallarés A. J., Vera G.: $\sigma$-fragmentability of multivalued maps and selection theorems.J. Funct. Anal. 117 (1993), no. 2, 243–273. 10.1006/jfan.1993.1127 |
| Reference: | [19] Jayne J. E., Rogers C. A.: Borel selectors for upper semicontinuous set-valued maps.Acta Math. 155 (1985), no. 1–2, 41–79. 10.1007/BF02392537 |
| Reference: | [20] Kelley J. L.: General Topology.Graduate Texts in Mathematics, 27, Springer, New York, 1975. Zbl 0518.54001 |
| Reference: | [21] Kelley J. L., Namioka I.: Linear topological spaces.The University Series in Higher Mathematics, D. Van Nostrand Co., Princeton, 1963, pages 26–82. Zbl 0318.46001 |
| Reference: | [22] Kitchen J. W., Jr.: Normed modules and almost periodicity.Monatsh. Math. 70 (1966), 233–243. 10.1007/BF01305304 |
| Reference: | [23] Köhler A.: Enveloping semigroups for flows.Proc. Roy. Irish Acad. Sect. A 95 (1995), no. 2, 179–191. |
| Reference: | [24] Komisarchik M., Megrelishvili M.: Tameness and Rosenthal type locally convex spaces.Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 117 (2023), no. 3, Paper No. 113, 53 pages. |
| Reference: | [25] Lau A. T.-M.: Uniformly continuous functionals on Banach algebras.Colloq. Math. 51 (1987), no. 1, 195–205. 10.4064/cm-51-1-195-205 |
| Reference: | [26] Megrelishvili M. G.: Fragmentability and continuity of semigroup actions.Semigroup Forum 57 (1998), no. 1, 101–126. Zbl 0916.47029, 10.1007/PL00005960 |
| Reference: | [27] Megrelishvili M.: Fragmentability and representations of flows.in Proceedings of the 17th Summer Conference on Topology and Its Applications, Topology Proc. 27 (2003), no. 2, 497–544. |
| Reference: | [28] Megrelishvili M.: Tame functionals on Banach algebras.in Banach Algebras and Applications, De Gruyter Proc. Math., De Gruyter, Berlin, 2020, pages 213–223. |
| Reference: | [29] Namioka I., Phelps R. R.: Banach spaces which are Asplund spaces.Duke Math. J. 42 (1975), no. 4, 735–750. 10.1215/S0012-7094-75-04261-1 |
| Reference: | [30] Neufang M., Pachl J., Salmi P.: Uniform equicontinuity, multiplier topology and continuity of convolution.Arch. Math. (Basel) 104 (2015), no. 4, 367–376. 10.1007/s00013-015-0726-9 |
| Reference: | [31] Pachl J.: Uniform Spaces and Measures.Fields Institute Monographs, 30, Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, 2013. 10.1007/978-1-4614-5058-0 |
| Reference: | [32] Rosenthal H. P.: A characterization of Banach spaces containing $l^1$.Proc. Nat. Acad. Sci. U.S.A. 71 (1974), no. 6, 2411–2413. 10.1073/pnas.71.6.2411 |
| Reference: | [33] Talagrand M.: Pettis integral and measure theory.Mem. Amer. Math. Soc. 51 (1984), no. 307, 224 pages. |
| Reference: | [34] Ülger A.: Continuity of weakly almost periodic functionals on $L^{1}(G)$.Quart. J. Math. Oxford Ser. (2) 37 (1986), no. 148, 495–497. |
| . |
Fulltext not available (moving wall 24 months)