[16] Blaheta, R.: Hierarchical FEM: Strengthened CBS inequalities, error estimates and iterative solvers. Programs and Algorithms of Numerical Mathematics Institute of Mathematics AS CR, Prague (2006), 24-29.
[17] Böhm, F., Bauer, D., Kohl, N., Alappat, C. L., Thönnes, D., Mohr, M., Köstler, H., Rüde, U.:
Code generation and performance engineering for matrix-free finite element methods on hybrid tetrahedral grids. SIAM J. Sci. Comput. 47 (2025), B131--B159.
DOI 10.1137/24M1653756 |
MR 4856616 |
Zbl 1563.65225
[19] Buttari, A., Huber, M., Leleux, P., Mary, T., Rüde, U., Wohlmuth, B.:
Block low-rank single precision coarse grid solvers for extreme scale multigrid methods. Numer. Linear Algebra Appl. 29 (2022), Article ID e2407, 15 pages.
DOI 10.1002/nla.2407 |
MR 4372443 |
Zbl 1538.65583
[21] Dostál, Z., Horák, D., Kružík, J., Brzobohatý, T., Vlach, O.:
Highly scalable hybrid domain decomposition method for the solution of huge scalar variational inequalities. Numer. Algorithms 91 (2022), 773-801.
DOI 10.1007/s11075-022-01281-3 |
MR 4480269 |
Zbl 1502.65198
[26] Gmeiner, B., Huber, M., John, L., Rüde, U., Wohlmuth, B.:
A quantitative performance study for Stokes solvers at the extreme scale. J. Comput. Sci. 17 (2016), 509-521.
DOI 10.1016/j.jocs.2016.06.006 |
MR 3580776
[27] Gmeiner, B., Köstler, H., Stürmer, M., Rüde, U.:
Parallel multigrid on hierarchical hybrid grids: A performance study on current high performance computing clusters. Concurrency Comput. Pract. Exp. 26 (2014), 217-240.
DOI 10.1002/cpe.2968
[28] Gradl, T.: Data Structures and Algorithms for the Optimization of Hierarchical Hybrid Multigrid Methods: Ph.D. Thesis. Friedrich-Alexander-Universität, Erlangen (2015).
[31] Hapla, V., Horak, D., Pospisil, L., Cermak, M., Vasatova, A., Sojka, R.:
Solving contact mechanics problems with PERMON. High Performance Computing in Science and Engineering Lecture Notes in Computer Science 9611. Springer, Cham (2015), 101-115.
DOI 10.1007/978-3-319-40361-8_7 |
Zbl 1382.74004
[32] Kohl, N., Bauer, D., Böhm, F., Rüde, U.:
Fundamental data structures for matrix-free finite elements on hybrid tetrahedral grids. Int. J. Parallel Emergent Distrib. Syst. 39 (2024), 51-74.
DOI 10.1080/17445760.2023.2266875
[34] Kohl, N., Thönnes, D., Drzisga, D., Bartuschat, D., Rüde, U.:
The $HyTeG$ finite-element software framework for scalable multigrid solvers. Int. J. Parallel Emergent Distrib. Syst. 34 (2019), 477-496.
DOI 10.1080/17445760.2018.1506453
[36] Kühn, M. J., Kruse, C., Rüde, U.:
Energy-minimizing, symmetric discretizations for anisotropic meshes and energy functional extrapolation. SIAM J. Sci. Comput. 43 (2021), A2448--A2473.
DOI 10.1137/21M1397520 |
MR 4284417 |
Zbl 1486.65225
[37] Kühn, M. J., Kruse, C., Rüde, U.:
Implicitly extrapolated geometric multigrid on disk-like domains for the gyrokinetic Poisson equation from fusion plasma applications. J. Sci. Comput. 91 (2022), Article ID 28, 27 pages.
DOI 10.1007/s10915-022-01802-1 |
MR 4393121 |
Zbl 1490.65305
[38] Leleux, P., Schwarz, C., Kühn, M. J., Kruse, C., Rüde, U.:
Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver for curvilinear coordinates representations from fusion plasma applications. J. Parallel Distrib. Comput. 205 (2025), Article ID 105143, 31 pages.
DOI 10.1016/j.jpdc.2025.105143
[43] Munch, P., Heister, T., Saavedra, L. Prieto, Kronbichler, M.:
Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations. ACM Trans. Parallel Comput. 10 (2023), Article ID 3, 38 pages.
DOI 10.1145/3580314 |
MR 4573597
[44] Papež, J., Rüde, U., Vohralík, M., Wohlmuth, B.:
Sharp algebraic and total a posteriori error bounds for $h$ and $p$ finite elements via a multilevel approach: Recovering mass balance in any situation. Comput. Methods Appl. Mech. Eng. 371 (2020), Article ID 113243, 39 pages.
DOI 10.1016/j.cma.2020.113243 |
MR 4142137 |
Zbl 1506.76097
[46] Stals, L.:
Adaptive multigrid in parallel. Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing. Volume 2 IEEE, Piscataway (1995), 792-795.
DOI 10.1109/ICAPP.1995.472269
[47] Stals, L.:
Parallel Multigrid On Unstructured Grids Using Adaptive Finite Element Methods: Ph.D. Thesis. Australian National University, Camberra (1995).
DOI 10.25911/5d6e4e221442f
[48] Strang, G., Fix, G. J.:
An Analysis of the Finite Element Methods. Wellesley-Cambridge Press, Wellesley (2008).
MR 2743037 |
Zbl 1171.65081
[49] Trottenberg, U., Oosterlee, C. W., Schüller, A.:
Multigrid. Academic Press, New York (2000).
MR 1807961 |
Zbl 0976.65106
[51] Vacek, P., Carson, E., Soodhalter, K. M.:
The effect of approximate coarsest-level solves on the convergence of multigrid V-cycle methods. SIAM J. Sci. Comput. 46 (2024), A2634--A2659.
DOI 10.1137/23M1578255 |
MR 4784859 |
Zbl 1545.65148
[52] Verfürth, R.:
A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series Advances in Numerical Mathematics. John Wiley & Sons, Chichester (1996).
Zbl 0853.65108
[54] al., W. Zhang et:
AMReX: A framework for block-structured adaptive mesh refinement. J. Open Source Soft. 4 (2019), Article ID 1370.
DOI 10.21105/joss.01370