Full entry |
PDF
(0.4 MB)
Feedback

Chemotaxis, Navier–Stokes, Lotka–Volterra, large-time behaviour

References:

[1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: **Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues**. Math. Models Methods Appl. Sci., 25 (2015), pp. 1663–1763. DOI 10.1142/S021820251550044X | MR 3351175

[2] Cao, X., Kurima, S., Mizukami, M.: **Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics**. arXiv: 1703.01794 [math.AP]. MR 3805111

[3] Cao, X., Kurima, S., Mizukami, M.: **Global existence and asymptotic behavior of classical solutions for a 3D two-species Keller–Segel-Stokes system with competitive kinetics**. arXiv: 1706.07910 [math.AP]. MR 3805111

[4] Hirata, M., Kurima, S., Mizukami, M., Yokota, T.: **Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier–Stokes system with competitive kinetics**. J. Differential Equations, 263 (2017), pp. 470–490. DOI 10.1016/j.jde.2017.02.045 | MR 3631313

[5] Lankeit, J.: **Long-term behaviour in a chemotaxis-fluid system with logistic source**. Math. Models Methods Appl. Sci., 26 (2016), pp. 2071–2109. DOI 10.1142/S021820251640008X | MR 3556640

[6] Tao, Y., Winkler, M.: **Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel-Navier–Stokes system**. Z. Angew. Math. Phys., 67 (2016), Article 138. MR 3562386