Previous |  Up |  Next


Title: Remarks on the qualitative behavior of the undamped Klein-Gordon equation (English)
Author: Esquivel-Avila, Jorge A.
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Pages: 221-228
Category: math
Summary: We present sufficient conditions on the initial data of an undamped Klein-Gordon equation in bounded domains with homogeneous Dirichlet boundary conditions to guarantee the blow up of weak solutions. Our methodology is extended to a class of evolution equations of second order in time. As an example, we consider a generalized Boussinesq equation. Our result is based on a careful analysis of a differential inequality. We compare our results with the ones in the literature. (English)
Keyword: Klein-Gordon equation, Blow up, High energies, Abstract wave equation, Generalized Boussinesq equation
MSC: 35B35
MSC: 35B40
MSC: 35L70
Date available: 2019-09-27T08:00:09Z
Last updated: 2019-09-27
Stable URL:
Reference: [1] Esquivel-Avila, J.: Remarks on the qualitative behavior of the undamped Klein-Gordon equation., Math. Meth. Appl. Sci. (2017) 9 pp., DOI: 10.1002/mma.4598. MR 3745359, 10.1002/mma.4598
Reference: [2] Esquivel-Avila, J.: Nonexistence of global solutions of abstract wave equations with high energies., J. of Inequalities and Applications, 2017:268 (2017) 14 pp., DOI 10.1186/s13660017-1546-1. MR 3716687, 10.1186/s13660-017-1546-1
Reference: [3] Ball, J.: Finite blow up in nonlinear problems., in Nonlinear Evolution Equations, M. G. Crandall Editor, Academic Press, 1978, pp. 189-205. MR 0513819
Reference: [4] Ball, J.: Remarks on blow up and nonexistence theorems for nonlinear evolution equations., Quart. J. Math. Oxford 28 (1977) 473-486. MR 0473484, 10.1093/qmath/28.4.473
Reference: [5] Willem, M.: Minimax Theorems., Progress in Nonlinear Differential Equations and Applications, Vol. 24, Birkh\"auser, 1996. MR 1400007
Reference: [6] Payne, L. E., Sattinger, D. H.: Saddle points and instability of nonlinear hyperbolic equations., Israel J. Math. 22 (1975) 273-303. MR 0402291, 10.1007/BF02761595
Reference: [7] Gazzola, F., Squassina, M.: Global solutions and finite time blow up for damped semilinear wave equations., Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 185-207. MR 2201151
Reference: [8] Esquivel-Avila, J.: Blow up and asymptotic behavior in a nondissipative nonlinear wave equation., Appl. Anal. 93 (2014) 1963-1978. MR 3227792, 10.1080/00036811.2013.859250
Reference: [9] Wang, Y.: A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrary positive initial energy., Proc. Amer. Math. Soc. 136 (2008) 3477-3482. MR 2415031, 10.1090/S0002-9939-08-09514-2
Reference: [10] Korpusov, M. O.: Blowup of a positive-energy solution of model wave equations in nonlinear dynamics., Theoret. and Math. Phys. 171 421-434 (2012). MR 3168856, 10.1007/s11232-012-0041-6
Reference: [11] Kutev, N., Kolkovska, N., Dimova, M.: Sign-preserving functionals and blow up to Klein-Gordon equation with arbitrary high energy., Appl. Anal. 95 (2016) 860-873. MR 3475853, 10.1080/00036811.2015.1038994
Reference: [12] Dimova, M., Kolkovska, N., Kutev, N.: Revised concavity method and application to Klein-Gordon equation., Filomat 30 (2016) 831-839. MR 3498681, 10.2298/FIL1603831D
Reference: [13] Alinhac, S.: Blow up for nonlinear hyperbolic equations., Progress in Nonlinear Differential Equations and Applications 17, Birkh\"auser, 1995. MR 1339762
Reference: [14] Levine, H. A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{tt} = −Au + \Cal F (u)$.. Trans. Am. Math. Soc. 192 (1974) 1-21. MR 0344697
Reference: [15] Wang, S., Xuek, H.: Global solution for a generalized Boussinesq equation., Appl. Math. Comput. 204 (2008) 130-136. MR 2458348
Reference: [16] Xu, R., Liu, Y.: Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations., J. Math. Anal. Appl. 359 (2009) 739-751. MR 2546791, 10.1016/j.jmaa.2009.06.034
Reference: [17] Kutev, N., Kolkovska, N., Dimova, M.: Nonexistence of global solutions to new ordinary differential inequality and applications to nonlinear dispersive equations., Math. Meth. Appl. Sci.39 (2016) 2287-2297. MR 3510159, 10.1002/mma.3639
Reference: [18] Kutev, N., Kolkovska, N., Dimova, M.: Finite time blow up of the solutions to Boussinesq equation with linear restoring force and arbitrary positive energy., Acta Math. Scientia 36B (2016)881-890. MR 3479262


Files Size Format View
Equadiff_14-2017-1_27.pdf 431.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo