[1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: 
Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues.  Math. Models Methods Appl. Sci. 25 (2015), 1663–1763. 
DOI 10.1142/S021820251550044X | 
MR 3351175 
[2] Biler, P., Karch, G., cot, P. Lauren\c, Nadzieja, T.: 
The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in a disc.  Topol. Methods Nonlinear Anal. 27 (2006), 133–147. 
MR 2236414 
[3] Biler, P., Nadzieja, T.: 
Existence and nonexistence of solutions for a model of gravitational interaction of particles.  I. Colloq. Math. 66 (1994), 319–334. 
DOI 10.4064/cm-66-2-319-334 | 
MR 1268074 
[4] Cao, X.: 
Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces.  Discrete Contin. Dyn. Syst. 35 (2015), 1891–1904. 
DOI 10.3934/dcds.2015.35.1891 | 
MR 3294230 
[6] Fujie, K., Senba, T.: 
Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity.  Discrete Contin. Dyn. Syst. Ser. B 21 (2016), 81–102. 
MR 3426833 
[7] Fujie, K., Senba, T.: 
Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity.  Nonlinearity 29 (2016), 2417–2450. 
DOI 10.1088/0951-7715/29/8/2417 | 
MR 3538418 
[8] Fujie, K., Senba, T.: 
Application of an Adams type inequality to a two-chemical substances chemotaxis system.  J. Differential Equations 263 (2017), 88–148. 
DOI 10.1016/j.jde.2017.02.031 | 
MR 3631302 
[9] Fujie, K., Senba, T.: 
Blow-up of solutions to a two-chemical substances chemotaxis system in the critical dimension.  In preparation. 
MR 3906204 
[10] Gajewski, H., Zacharias, K.: 
On a reaction-diffusion system modelling chemotaxis.  International Conference on Differential Equations, Vol. 1, 2 (Berlin 1999), 1098–1103, World Sci. Publ., River Edge, NJ, 2000. 
MR 1870292 
[11] Herrero, M.A, Velázquez, J.J.L.: 
A blow-up mechanism for a chemotaxis model.  Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1997), 663–683. 
MR 1627338 
[13] Horstmann, D.: 
On the existence of radially symmetric blow-up solutions for the Keller-Segel model.  J. Math. Biol. 44 (2002), 463–478. 
DOI 10.1007/s002850100134 | 
MR 1908133 
[14] Horstmann, D.: 
From 1970 until present: the Keller-Segel model in chemotaxis and its consequences.  I. Jahresber. Deutsch. Math.-Verein. 105 (2003), 103–165. 
MR 2013508 
[18] Nagai, T.: 
Blow-up of radially symmetric solutions to a chemotaxis system.  Adv. Math. Sci. Appl. 5 (1995), 581–601. 
MR 1361006 
[19] Nagai, T., Senba, T., Yoshida, K.: 
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis.  Funkc. Ekvacioj, Ser. Int. 40 (1997), 411–433. 
MR 1610709 
[20] Osaki, K., Yagi, A.: 
Finite dimensional attractor for one-dimensional Keller-Segel equations.  Funkcial. Ekvac. 44 (2001), 441–469. 
MR 1893940 
[22] Sugiyama, Y.: 
On $\varepsilon$-regularity theorem and asymptotic behaviors of solutions for Keller-Segel systems.  SIAM J. Math. Anal. 41 (2009), 1664–1692. 
DOI 10.1137/080721078 | 
MR 2556579 
[23] Senba, T., Suzuki, T.: 
Chemotactic collapse in a parabolic-elliptic system of mathematical biology.  Adv. Differential Equations 6 (2001), 21–50. 
MR 1799679