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ON THE STRUCTURE OF SIMPLE SEMIGROUPS WITHOUT
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Dedicated to Prof. Dr. J. Hronec
on the occasion of his 70t birthday.

This paper deals with the structure of simple semigroups without
zero. A semigroup is called simple if it does not contain non-trivial
two-sided ideals. It is shown especially: a simple semigroup, having
at least one minimal left ideal, is the class sum of isomorphic groups
if and only if it contains at least one idempotent. The paper contains
further a study of the structure of minimal left and right ideals and
of the so called Suschkewitsch (CynrkeBud) kernel of general (i.e.not
necessarily simple) semigroups.

By a semigroup we mean a non-vacuous set S of elements a, b, c, ...
closed under an associative univalent operation: (ab) ¢ = a(bc).

In such a system we introduce in usual way the notion of ideals.
A non-vacuous subset L of S is called a left ideal if the relation SL C L
holds, i. e. if for every s e S, l € L, sl ¢ L holds. A right ideal is a subset
R C 8 satisfying the relation RS C R. A two-sided ideal is a subset,
which is both a left and right ideal of S.

The intersection (if it is non-vacuous) and the sum of two (left,
right, two-sided) ideals is a (left, right, two-sided) ideal.

An element z ¢ S with the property az = za = z for every aeS
is called a ‘““zero element’”. A semigroup contains at most one zero
element.

A left (right, two-sided) ideal of the semigroup &S is called a minimal
ideal of § if it does not contain any proper subset, which is itself a left
(right, two-sided) ideal of S.

Two minimal left (right) ideals have no element in common. A semi-
group has at most one minimal two-sided ideal. The zero element (if it
exists) is clearly a minimal two-sided ideal.

According to Regs [1] a semigroup is called simple if it contains
no other two-sided ideals than § itself, except possibly the zero ideal
consisting of the single element z (if S has a zero element).
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The purpose of this paper is to study the structure of some types
of simple semigroups such defined.

Simple semigroups without zero are of greatest importance in
studying general (i. e. non necessarily simple) semigroups. If namely
the intersection of all two-sided ideals of a semigroup S without a zero
element is non-vacuous, then it is a simple semigroup without zero.
This intersection is the so called “Suschkewitsch kernel” of S. The study
of the kernel is identical with the study of simple semigroups without
Zero.

Crirrorp [3] introduced in the study of semigroups two very
general conditions, which we shall use in the following formulation.

Condition A. S isa semigroup without zero having at least one minimal
left ideal.

Condition B. Sisasemigroup without zero having at least one minimal
left and at least one minimal right ideal.

We shall prove: A simple semigroup satisfying Condition B is a class

sum of disjoint isomorphic groups. This result — though not stated
explicitly in CrirrorDp [3] — can be deduced from his results [1], [2],

[3]. We give first an independent proof of this theorem. The proof based
on our Theorems 2,3 and 2,4 below seems to be simpler, since we need
not use the notion of “primitive idempotents” and “‘completely simple
semigroups’ first introduced by Regs [1].

The form of our proof enables ustoshow clearly therole of the existence
of a minimal right ideal. Then it is easy to find conditions equivalent to
Condition B. If § satisfies Condition A, we show that the existence of
at least one minimal right ideal is used only in proving the existence of
at least one idempotent. On the other side we show that the existence of
at least one idempotent (in a simple semigroup satisfying Condition A)
implies the existence of at least one minimal right ideal. Hence, in a
simple semigroup satisfying Condition A, the existence of at least one
idempotent and of at least one minimal right ideal are equivalent.

In addition to these results we get in course of our investigation
other important properties of minimal left (right) ideals.

In a forthcoming paper — which I intend to publish in this journal
— we shall widely generalise the results of this paper to semigroups
having a zero element and — more generally — to semigroups havmg

a Suschkewitsch kernel.

Remark. In what follows we use the following notations. The
symbol 4 C B (in contrary to A C B) means always that 4 is a proper
subset of B. If the validity of the assertion x implies the validity of the
assertion 5, we shall write « = . Other notations have the usual
meaning.
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1.

In this section we do not suppose first that the semigroup S is
simple.

Theorem I,I. (Known, see e. g. CuirrorD [3], p. 522.) Let L be a
minimal left ideal of the semigroup S. Let ¢ be any element of S. Then Lc
18 also a mintmal left ideal of S.

Proof. The set Lc is clearly a left ideal of S. Suppose — contrary
to our statement — that L* is a left ideal of S and L* C Lc. Let L, be
the set of all elements a € L with ac € L*. The set L, is a left ideal of S,
since for every s e S we have sac e L*, so that also sa € L, holds. Since
further L is a minimal left ideal of S, we have L, = L, L¢c = L*. Hence
Lc does not contain any proper subideal. This is a contradiction to the
supposition.

Theorem 1,2, (Known, seeagain Crirrorp [3], p.523.) Let S be a
semigrowp satisfying Condition A. Then the sum of all the minimal left
ideals of S is a two - sided ideal of S.

Proof. Let M bethesum of all the minimal left ideals of S, M = zL“.

M is clearly a left ideal. We show that M is also a right ideal. Let s be
any element ¢ S. It is Ms :ZLa.s. Every summand L,s is a minimal

left ideal of S. Hence it is yet contained in M (since M was the sum of
all the minimal left ideals). The relation Ms C M holds for every element
sef,i. e. M is atwo-sided ideal of the semigroup S.

‘Theorem 1,3. (See analogously Scawarz [1], p. 31.) 4 semigroup
without zerol) is the class sum of its minimal left ideals if and only if the
following condition holds: every relation of the form

a=uzb, a, b, xefS
implies a relation
xa =b
with some x € S.

Proof. 1. The condition is necessary. Let S be the sum of its mini-
mal left ideals. Let be @ € S. The minimal left ideal containing a is neces-
sarily (a, Sa). Let be b % a. The element b belongs to the minimal left
ideal (b, Sb). Two minimal left ideals are either identical or have no
element in common. In the first case (a, Sa) = (b, Sb). Hence if a ¢ Sb
holds, i. e. if there exits an xeS with @ = xb, then there holds also
beSa i. e. there exists an element x satisfying the relation b = za. This
proves our assertion.

2. The condition is sufficient. We show: if S satisfies the condition
given in our theorem, then every element a ¢ S is contained in some

1) For semigroups having a zero element this problem is trivial, since there
exists only one minimal left ideal (i. e. the zero ideal) and S reduces to z alone.

43



minimal left ideal of S. Consider the element a and the ideal L, = (a, Sa).
Suppose — in the way of an indirect proof — that L, is not a minimal
left ideal of S, i. e. L, contains a subideal L with L C L,. We prove that
this is impossible.

Let be be L, b & a. The ideal L, = (b, Sb) is a left ideal of S
satisfying the relation L, C L C L,. Since b € L,, there holds b = za,
x € 8. According to the supposition this relation implies a relation a =
= zb with x € S, i. e. @ € Sb. Therefore

ae L, = (b, Sb).
Multiplying on the left by §, we get
Sa C (Sb, S2b) = (Sb),
(a, Sa) C (b, Sb),
L, C L.
Hence L, = L;. This is a contradiction to the supposition. The ideal (a,
Sa) is a minimal left ideal. Every element a ¢ S belongs to some minimal
left ideal. This proves our theorem.
The right dual theorem, which can be proved analogously, is the
following:

Theorem L, 4. 4 semigroup without zero is a sum of its minimal right
ideals if and only if every relation of the form

a="by, ab,yesS
implies a relation
ay =15
with some y € S.

Corollary 1,3. If a semigroup without zero is the class sum of its
minimal left ideals, then to every a e S there exists an element e € S such
that a = ea.

Proof. Since L, = (a, Sa) is a minimal left ideal, there holds L, =
= Sa. In fact, the relation Sa C (a, Sa) would be a contradiction to
the assumption of minimality of the ideal L,. In other words: for every
a € S there holds a € Sa, i. e. for every a € S there exists an element e
such that a = ea.

Analogously:

Corollary 1,4. If a semigroup without zero is the sum of its minimal
right ideals, then to every a € S there exists an element [ e S such that a =
= af holds.

2.

In this section we prove first that the conditions of Theorems 1,3
and 1,4 are satisfied only for simple semigroups.

Theorem 2,1. Let S be a semigroup satisfying Condition A. Then S is
the sum of its minimal left ideals if and only tf S is a simple semigroup.
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Proof. 1. Let S be simple. According to the supposition it contains
at least one minimal left ideal L. According to Theorem 1,2 the sum of
all the minimal left ideals of S is a two-sided ideal M. Hence M= S,
since M C S would be contrary to the simplicity of S.

2. Conversely. Let S be the sum of its minimal left ideals: S = zLa.

Suppose that S has a two-sided subideal M’ different from S, i. e.
M'ScM CS. (1)

Since M'L, is a left ideal of S contained in L,, hence — with respect to
the minimality — equal to L,, we have

MS=MPL,=>(ML,)= DL, =8,
contrary to the relation (1). This proves Theorem 2,1.

In the following we treat only simple semigroups.

Theorem 1, 1, Theorem 1,3 and Corollary 1,3 imply:

Theorem 2,2. Let S be a simple semigroup satisfying Condition A.
Then to every a e S there exists an e € S with a = ea. Moreover, the following
implication holds:

a=zb=>2a=0>0 (a,b,z,xef).

Using the right dual theorem, we get:

Theorem 2,3. Let S be a simple semigroup satisfying Condition B.
Then to every a e S there exist two elements e, feS such that a = ea,
a = af. Moreover, the following implications hold:

a = xb=-2xa =0, (2)
_ a="by=ay =", (3)
(@ b, 2, 2,9y, yel).

The following theorem (which we shall prove very easily) is from

the general point of view the most important theorem of this paper.

Theorem 2,4. Let the suppositions of Theorem 2,3 hold. Then the
elements e, | are idempotents.

Proof. 1. We prove first that e is an idempotent. It follows from the
equation @ = ea, with respect to (3), the existence of an element @ with
a@ = e. Now we can write successively

e=aa = (ea)d = e(ad) = e .e = e2.
Hence e is an idempotent.

2. The proof of idempotency of f is analogous. It follows from the
equation a = af, according to the relation (2), the existence of an
clement @ ¢ S with da = f. Hence

f = da = alaf) = (@a) | = f*,
which completes the proof.
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Remark. Note the following reciprocity. The existence of a minimal
left ideal implies the existence of the element e. Its idempotency is
proved by means of the relation (3), which itself is a consequence of the
existence of minimal right ideals.

Dually: the existence of a minimal right ideal implies the existence
of the element f. Its idempotency is proved by means of the relation (2),
which itself is a consequence of the existence of minimal left ideals.

Condition A alone (without further suppositions) is not strong
enough to assure the existence of idempotents.

3.

In this section we are studying first the structure of minimal left
ideals of a simple semigroup S. The methods of investigation are in
some points similar to those used yet earlier in other connections by
SuscaxewIrscH (A. K. Cymresunu) [1], Crirrorp [1] and Scawarz [1].

It must be noted in advance that in Theorems 3,1—3,7
we use only Condition A and that consequence of Condition
B that every minimal left ideal has at least one idempo-
tent. Condition B is not used otherwise explicitly.

We show first that Condition B really implies that every minimal
left ideal L contains at least one idempotent. In fact, let be a ¢ L. Ac-
cording to Theorem 1,1 La is a minimal left ideal of S. Since La C L .
.L C L, we have La = L. Hence to the element a ¢ L there exists an
element e e L such that ea = a holds. According to Theorem 2,4 e is
an idempotent.

Theorem 3,l. Let the simple semigroup S satisfy Condition B. Then
every minimal left ideal L of S can be written in the form L = Se, where e
18 an tdempotent. Analogously: every minimal right ideal R is of the form
R = f8, where f is an idempotent.

Proof. Let L be any minimal left ideal. As it was shown above, L
contains an idempotent e. Consider the left ideal Se. The following
relation holds: Se C SL C L. Hence (with respect to the minimality of L)
Se == L, which proves our theoremn.

The dual part follows analogously.
Theorem 3,2. Let S be a simple semigroup satisfying Condition B.

Then every minimal left ideal L of S is a semigroup having the following
properties:

a) L has at least one right identity.
b) Every idempotent of L is a right identity for every element € L.
¢) In L the right cancellation law holds.

Proof. a) Since L = Se (with e idempotent), every a e L is of the
form a = ue (u e S). Hence ae = (ue) e = ue? = ue = a.
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b) There follows from the proof of Theorem 3,1 that for every
idempotent e* e L the relation L = Se* holds. This formula together
with the statement a) implies the statement b).

¢) Note first: since for every a e L, La = L, there exists to every
b e L such an element z ¢ L that za = b holds. In other words: the
equation xa = b has a solution = ¢ L for every couple a, b € L. Let now be

ac =bec (a,b,cel). 4)

Find an element ¢ e L satisfying the equation cc = e (e idempotent € L).
Then
(cc)? = ¢(ce) ¢ = cec = cc.

Hence cc = e* is also an idempotent e L. Multiplying the relation (4)
with ¢ on the right, we get

acc = bee,

ae* = be*,
and (with respect to the fact proved in b)) a = b. This completes the
proof of our theorem.

Theorem 3,3. Let S be a simple semigroup satisfying Condition B.
Let L be a mintmal left ideal of S. Let e, be any idempotent € L. Then e, L
8 a group.

Proof. Denote g, =e,L. Since ¢2=ce,L.e,L =e,(Le,) L =
=e,L.L =e,L = g,, the set g, is a semigroup.

1. We prove that e, is the only idempotent e g,. In fact: let e, 5 ¢,
be two idempotents e g,. Then there would be e = e, and, since further
€p € e, L, there would be also e,e; = e5. Hence e ey = ¢f. According to
Theorem 3,2 c) this equation implies e, = ¢4, contrary to the supposition,

2. We prove next' that for every a € g, the equations
ya = e,, (5)
axr = e, (6)
have solutions with z, ¥ € g,.
a) For every a ¢ L La= L holds. Multiplying on the left by e,, we

get e, L = e, La, e, € g,a. Hence for every a e g, there exists an y € g,
withe, = ya.

b) We prove the solvability of the equation (6) in the following way.
It follows from a) that there exists an @ e g, satisfying the equation
aa = e,. Our statement will be proved if we show that @ satisfies also
the equation a@ = e,. We have first aa € g,, since it is @ € g,, @ € g, and
8. is a semigroup. Secondly, there holds

(ac)? = a(da) G = ae,a@ = aq.
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Hence aa is an idempotent. But since g, contains just one idempotent,
we have ad@ = e,, which proves the validity of our statement.

3. We prove at last the uniqueness of the solutions of (5) and (6).
This follows immediately for the equation (5), since — according to
Theorem 3,2 ¢) — ;¢ = y,a implies y; = y,. For the equation (6) we
prove it in the following manner. Let be ax, = ax, = e (v, z, € g,).
Find an element y € g, with ya = e,. (This is possible with respect to
(5).) Multiplying by y on the left, we get yax, = yax,, e, x; = e ;.
Since e, is clearly a left unity for every element € g,, we have x; = x,.

The statements 1, 2, 3 imply that g, is a group with e, as unity
element. Theorem 3,3 is completely proved.

Theorem 3,4. Let the suppositioﬂs of Theorem 3,3 be satisfied. Let
ey, ep be two different idempotents e L. Then the groups g, = e, L and
84 = egL have no element in common.

Proof. Suppose, contrary to our assertion, that the intersection
8. g is non-vacuous. Let @ be an element with a € g,, @ € g4. It can
be written in two forms a = e,a = eza. According to Theorem 3,2 c)
there would be, after cancellation by a on the right, e, = e;. This con-
tradicts our supposition.

Theorem 3,5. Let the suppositions of Theorem 3,3 be satisfied. Then
every element a € L is contained in some group, 1. e. L is a sum of disjoint
groups.

Proof. It is sufficient to prove that every a e L can be written in
the form a = ea, where e is an idempotent.?) The existence of such an
element ¢ follows from the relation La = L. Its idempotency follows
from the relation @ = ea = ¢%a, i. e. ea = e®a, which (with respect to
Theorem 3,2 c¢)) implies e = e2.

Remark. The groups of Theorem 3,5 are uniquely determined. Let
be — contrary to this assertion — L zga, L = Zga two different de-

compositions of L into a sum of groups. Then thore exists at least one
element a belonging to two different groups gs, 8, Hence we can write
a = ez, a=2&a(ege ¢, unity elements of the groups g4, q,). But ea =
=e,a 1mphes es = €,, hence g5 = ezL = ¢,L = g,, contrary to the
supposition.

Theorem 3,6. The groups of Theorem 3,4 (or Theorem 3,5) are all
isomorphic together.

2) This is simply the statement of Theorem 2,3. But in this section 3 (according
to the agreement made at the beginning of the section) we use only the fact that
every minimal left ideal L has at least one idempotent (without using otherwise
Condition B explicitly).
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Proof. 1. Let e,, e; be two idempotents € L. Let X be the set of
all elements € L such that e, . X equals a single fixed element x € g,.
Then it is
epX = (ege,) X = ep(e,X) = epm,

i.e. e5X is again a single element € g4.3) (In fact, it equals the element
egr.) Conversely, let X’ be the set of all elements e L, for which the
relation ez X’ = ev holds. Clearly X’ 2 X. On the other side

ea X' = (eqep) X' = e,(eX") = eq(ep2) = (enep)* =e,x =2

(the last relation being satisfied, since it is z e g,). Therefore X’ C X,
whence X’ = X.

As a consequence of the state just proved, we can decompose L in
a sum of disjoint sets X, Y, Z, ... having the following property: if we
multiply any of these sets by any idempotent € L, we get always a single
element € L. (For different idempotents and different sets we get — in
general — different elements.)

2. Let now be x any element € g,. Let be x = ¢,&, £ € L. We show
that the correspondence

x>y = epk (7)

is an isomorphic mapping of the group g, to the group gz. The element
y = ez€ belongs to g,z According to 1. above the element y (result of
the multiplication of e; and &) does not depend on the choice of the
element & e L.%)

Let x; = e,&;, v, = ¢,&, be two elements ¢ g,. The elements cor-
responding to them in the mapping (7) are y, = ez&,, y,= €4&; (Y1, Y € §5)-
To the product 2, = e,&, . e,& = €, &, correspond in the same map-
ping the element e4&,£,. But this element equals just y,y,, since ez§,&, =
= eg&, . epEy = y,9,. Hence the mapping (7) is a homomorphism of the
group g, on the group g,. Since further g, = e,4L, every element € g4
is image of some element z € g,. To show that the correspondence (7)
is an isomorphism, it is sufficient to prove that x, = x, implies ¥; = y,.
In fact, let be e, == e &, but — contrary to this statement — ezé; =
= ey&,. Multiplying the last relation on the left by e,, we get e,ez%; =
= e,e55,, hence e,&; = e,&,, which contradicts our supposition. Theorem
3,6 is completely proved.

Theorems 3,3—3,6 give 1;ogether:

8) We use here and in the following the fact that e, eg are right unity elements
in L.

%) Since for the set X, for which e X = « holds, the product er equals also
a single element ¢ L (in our case the element y).
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Theorem 3,7. Let S be a simple semigroup satisfying Condition B.
Then every minimal left ideal L of S is a swm of isomorphic groups.

We shall call these groups “‘group-components’ of L.

Analogous result holds naturally for minimal right ideals.

Since a simple semigroup satisfying Condition B is the class sum
of its minimal left (right) ideals, there follows from Theorem 3,7 immedi-
ately that S is a sum of disjoint groups. We can sharpen this result by
proving the following:

Theorem 3,8. Let S be a simple semigroup satisfying Condition B.
Then S is the class sum of disjoint isomorphic groups.

Proof. Let be S = zL(5) (& =u,p,y,...), where L(® runs through
€
all minimal left ideals of S. We know that L&) = >'q &), where g, are

n
isomorphic groups. Since the group-components g, of every L(* are
isomorphic together, it is sufficient to show that in every L® (§ = «,
B,y ...) there exists at least one group-component, which is 1somorphw

with the group-components of one fixed minimal left ideal, say the
ideal L),

Let R be a minimal right ideal. If the element ¢ € g, belongs to
the ideal B, then all elements € g belong also to R. As a matter of
fact, the relation ce R implies 8 CRSCR, hence ¢(gf + ...)C R
and therefore 6, CR.

Let us write further
R=RNS=RNDLO=>RNLY) = (RN L) + ®)
é &
+(@ROL®) 4 ..

Since RL® C R N L®), every summand on the right hand side is non-
vacuous. According to the remark just made, B N L® is a group or
(perhaps) a sum of groups g,(), where g, runs through some of the
group-components of the ideal L(®.*) (Especially B M L(® is a sum of
some group-components g of the ideal L(®.) Hence R is a sum of
groups, this sum contalmng group-components of every L(®) (&= «,

By, ...

But on the other side we know that R is a sum of isomorphic groups.
Therefore (since this decomposition is uniquely determined) all groups
on the right-hand side of the relation (8) are isomorphic with g4
(group-component of L(®)). We proved: in every ideal L) there exists
a group-component isomorphic with the group g,(®. This completes the
proof of Theorem 3,8.

*) It can be proved that R N L®is a single group.
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4.

In proving Theorems 3,1—3,8 we used the existence of a minimal
right ideal just two times:

a) first, to assure the existence of 1dempotents in every minimal
left ideal of S,

b) secondly (in Theorem 3,8), to prove that the group-components
of all ideals of § are isomorphic together.

This fact anticipates that Theorem 3,8 will be perhaps true if only
Condition A with some supplementary suppositions will be satisfied. The
weakest possible supposition is: S has at least one idempotent. We
show that this supposition is really sufficient. The following theorem
holds:

Theorem 4,l. Let S be a simple semigroup satisfying Condition A.
The necessary and sufficient condition that S should be a sum of isomorphic
groups is: S has at least one idempotent.

Proof. 1. The condition is necessary, since a group must contain
an idempotent.

2. We prove that the condition is sufficient. Let S contain the
idempotent e. Since Condition A holds, there exists a minimal left ideal
L containing e. For this ideal there holds L = Le; moreover, L is a sum
of (isomorphic) groups. To prove our theorem it is sufficient to show:
S has also at least one minimal right ideal. For then the suppositions of
Theorem 3,8 are satisfied.

We prove that B = eS is a minimal right ideal of the semigroup S.
This follows indirectly. Suppose that R = eS contains a proper subideal
R', R C R. Since R'L C R" L, the intersection LN R’ is non-vacuous.
Let @ be any element ¢ L N R’. Clearly aS C R’ C eS. The element a
(belonging to L) belongs also to some group g,, group-component of the
ideal L. With a belong to R’ also all elements a8 and the more so all ele-
ments of the group g,. Therefore g, C LM R’. Let e, be the unity ele-
ment of this group. We have g, C L (0 R’C R'CeS. Since a € ¢S, we have
ea = a. Since further a belongs to g,, there holds also e,a = a. The
elements e, e,, @ are contained in L and satisfy the equation ea = e a.
But in L the right cancellation law holds; therefore e = e,,.

Find now in g, an element @ with a@ = e. Then it holds
R=eS=adSCaSCR.

The result R = eS C R’ is a contradiction to the assumption R’ C R.
This proves Theorem 4,1.

We obtained a very interesting result Let 8 be a simple semigroup
satisfying Condition A. Then the suppositions
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s

a) S contains at least one idempotent,

b) S contains at least one minimal right ideal, are equivalent. In
fact: it was proved in Theorem 2,4 that b) implies a); conversely, we
proved in Theorem 4,1 that a) implies b).

5.

We prove now one result concerning general (i. e. not necessarily
simple) semigroups, which is an immediate consequence of our theorems
and is itself of greatest interest.

Theorem 5,1, Let S be a semigroup without zero having at least one
mainimal left ideal. If one of the minimal left ideals has at least one idem-
potent, then every minimal left ideal has tdempotents. Moreover, S contains
minimal right ideals, each of which has idempotents. The sum of all the
minimal left ideals is identical with the sum of all the minimal right ideals.
At last, every minimal left and right ideal is generated by idempotents.5)

Proof. A semigroup without zero having a minimal left ideal has
a Suschkewitsch kernel K. (See e.g. CLirrorD [3].) From Theorems 1,2
and 2,1 follows that the kernel is the sum of all the minimal left ideals
and that K is a simple semigroup. One proves easily that every minimal
left ideal of S is also a minimal left ideal of K. According to the sup-
position K has an idempotent. Hence K has at least one minimal right
ideal R of K. One shows easily again that R (and every minimal right
ideal of K) is also a minimal right ideal of S. Hence: K is a sum of iso-
morphic groups. Every minimal left and right ideal of S contains idem-
potents and is generated by them.

Corollary 5,1. Let S be a semigroup without zero having at least one
manimal left ideal. If one of the minimal left ideals contains at least one
element of finite order, then every minimal left and right ideal of S s
generated by idempotents.

Proof. Let @ be an element of finite order, which is contained in
the minimal left ideal L. All powers of @ : a, a?, a3, ... belong to L. But it is
known (and elementary to prove®)) that for some integer s > 0 a° is
an idempotent. Hence the suppositions of Theorem 5,1 are satisfied and
Corollary 5,1 holds.
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