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ON THE CATEGORY OF THE SET OF CUT POINTS
OF CONTINUA OF A CERTAIN TYPE

KAZIMIERZ ZARANKIEWICZ, Warszawa.
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Main results: every n-dimensional continuum ¢ may be imbedded in
an n-dimensional continuum C* such that the set of cut points of C*
as well as its complement are dense in C*; if the set of endpoints of a
continuum is dense, then its complement is of the first category.

I want to report about the question of the category of the set of cut
points of a continuum C in the case that the set of cut points of € and the
set of non-cut points of €' are both dense on C. The class of such continua
is very large for it has been found that an arbitrary continuum C in n-
dimensional Euclidean space can be embedded in a continuum C* of
dimension 7 (lying in an Euclidean space of at most 2n -+ 1 dimensions)
which has the above property.

The answer to the question about the category of the set of all cut
points of a continuum C depends on the particular character of non-cut
points. This leads to the natural dichotomic classification of non-cut
points into two kinds (the first of which are endpoints). If the set of non-
cut points of such continua contains a dense (in C) sub-set of points of the
first kind, then the set of cut points is of the first category; if, on the other
hand, the set of non-cut points contains points of the second kind, then
we can say nothing about the category of the set of the cut points, i. e.
it may be as well one of the first category as of the second category. This
is easily seen from the example given below.

Incidentally, these considerations suggest a new, more natural defi-
nition of the notion of simple link which was introduced by R. L. MOORE
and made use of by G. T. WHYBURN. In this way we obtain a more
natural definition of cyclic clement in the sense of G. T. WHYBURN.

%*

The point 2 is called cut point of the continuum C if the set ' — x is
not connected. If the points @ and b lie in two disjoint parts of ' — x
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then we say that the point z cuts the continuum C between a and b. The
set of all cut points of the continuum C'is denoted by R(C). The set of all
non-cut points of the continuum C (i. e. points z for which ¢ — z is con-
nected) will be denoted by N(C). Hence

R(C) + N(C) = C.
If 2 C R(C), then there exists a decomposition of the continuum C
into two sets!)
C=A4,+ B, (1)
where 4, and B, are continua (containing more than one point) and

where
A, .B, ==

We shall say that the decomposition (1) corresponds to the cut
point .

Let a be a fixed non-cut point of the continuum C; for every point
x C R(C) the point @ belongs to one and only one of the two sets 4, and
B,; we will always designate by A4, that of the two sets which contains the
point a. We now consider the set

Pla) — TIA4,, (2)

where  runs over the set B(C). We note that if more than one decomposi-
tion (1) corresponds to a point z,2) then we must take in (2) all possible 4,,
i. e. from every possible decomposition (1).

The set P(a) is always non-empty since P(a) D a.

Theorem l. If P(a) — a == 0, then the set P(a) is a continuum con-
sisting of more than one point.

Proof. Let b be an arbitrary point of the set P(a) — a. The conti-
nuum C contains a continuum K which contains @ and b and which is
irreducible with respect to this property (i. e. there exists no continuum
K’ which contains both @ and b and which is contained in K and is not
equal to K). We shall now show that

K C A, for every x C R(C). (3)
If K had a common point z (z ) with B,, then K . 4, would again be
a continuum which contains both @ and b and which is different from K
(for K . A, contains no longer the point z). But this is impossible since
K is irreducible between @ and b. Thus (3) is proved and then by (2) we
have K C P(a). Hence, the set P(a) has the property that for every point
b it contains a continuum which connects @ and b. This means that the
set P(a) is connected and since by (2) it is closed, it is actually a conti-
nuum.

1) See C. Zarankiewicz: Sur les points de division..., Fund. Math., IX, 136.
%) This is the case when z is & branchpoint.
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R. L. Moore introduced the notion of a set which is called ,,simple
link*; it was used by G. T. WHYBURN who defines?) it in the following
way: if p is neither a cut point nor an end point of a connected set M,
p C M, the set consisting of p together with all points of M conjugate?) to
p will be called a simple link of M.

For continua the set P(a) happens to be identical with the simple
link. For we have

Theorem 2. 4 necessary and sufficient condition that a set M which
contains more than one point (M C C) be a simple link for C is the existence
of a non-cut point z in C such that M = P(z).

Proof. Suppose the set M which contains more than one point is
a simple link of C. Then the set M contains a point z belonging to N(C).5)
Let @ C M. There are no points which cut C between x and z, i. e. in every
decomposition (1) both points @ and z always belong to the same sum-
mand. Hence,  C P(z). This implies that M C P(z).

Now, let y C P(z); this means that in the decomposition (1) we have
y C A4, for every x C R(C); hence there exists no point which cuts C
between y and z. Then, by the definition of simple link, we have y C M;
consequently P(z) C M. The two above inclusions imply that P(z) = M.

Suppose now that the set P(a) contains more than one point; then
P(a) — ais not empty and, by Theorem 1, P(a) is a continuum. We will
show that P(a) is a simple link for C. Let M, be a simple link for C' con-
taining the point a. For every point ¢ C P(a) — a there exists no point &
which cuts ¢ between ¢ and a; i. e. both points ¢ and a belong to M ;
hence t C M, and consequently P(a) C M,.

Let w be a point of M,. By the definition of simple link there exists
no point which cuts C between w and «; i. e. in every decomposition (1)
both points w and a always belong to the same summand A4,. Hence
w C P(a) and furthermore M, C P(a). The two above inclusions imply
M, = P(a).

As the set P(a) is identical with the simple link for continua we can
formulate the following theorems on the basis of the results of G. T.
WHYBURN:®)

Theorem 3. T'he necessary and sufficient conditions that a point x of
a continuum C be an endpoint are the following:

1. the point x is not a cut point of C,
2. P(z) = w.

3) G. T. Whyburn: Analytic Topology, Coll. Publ. of Amer. Math. Soc., 1942, 64.

%) Two point @ and b of a connected set M will be said to be conjugate provided
no point separates @ and b in M.

5) Q. T. Whyburn, loc. cit., 65.
8) Q. T. Whyburn, loc. cit., p. 64.
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This theorem can be considered as a new definition of an endpoint
in the sense of K. MENGER and G. T. WaHYBURN. On the other hand, it
gives a dichotomic classification of the non-cut points of any continuum C.

A point x which is a non-cut point of an arbitrary continuum €' will
be called of the first or second kind, according as P(x) = x or P(z) == .

The peints of the first kind are endpoints. On the basis of further
results of G. T. WHYBURN,?) we can formulate:

Theorem 4. T'he set P(x) contains an at most denumerable set of points
which are cut points of the continuum C.

Theorem 5. Two sets P(x) and P(y) are cither disjoint, identical or
have at most one common point which must be a cut point of C.
From these theorems it follows immediately:

Theorem 6. An isolated non-cut point of the continuum C must be of
the first kind. 7. e. it ts an endpoint.

Proof. As a matter of fact let us suppose that a is an isolated non-cut
point of C and that P(a) is a continuum; then by Theorem 4 there will
exist an uncountable set of points which do not cut C' and which lie in
every neighborhood of a. This contradicts the hypothesis that a is an
isolated non-cut point. Hence, P(a) = a. Therefore — by Theorem 3 —
the point a is an endpoint.

An interesting class of continua are those on which the sets R(C) and
N(C) are both dense. Examples of such continua have been given by
T. Wazewski, K. MENGER, and myself.8)

The class of such continua is quite large; for we have following

Theorem 7. For every n-dimensional continuwum C there exists a n-
dimensional continuum C* (lying in an Kuclidean space of at most
2n -+ 1 dimensions) such that:

1. CC O%,

2. both R(C*) and N(C*) are dense on C*.

Proof. A given continuum € may be embedded in an at most 2n + 1
dimensional Euclidean space,®) in which every point of the continuum is
accessible by a simple arc. In the continuum C every point accessible by
a simple arc is also accessible by the dendrite of WAZEWSKI or by one of
MENGER (i. e. if p is a point of the continuum C lying in a Euclidean space
Ro,1, then there exists a dendrite of Wazewskl W such that both
W — pCRoyy1— C and W . O = p). Let us now choose in ¢ a denu-

8) 1. Wazewski: Sur les courbes de Jordan..., Annales de la Société Polonaise
de Math., 2 (1923), 49. — K. Menger: Grundziige einerr Theorie der Kurven, Math,
Ann., 96, 285. — C. Zarankiewicz, loc. cit., 158.

%) K. Menger: Kurventheorte, Berlin-Leipzig, 1932.
) G. T. Whyburn, loc. cit., p. 65.
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merable dense set L of points and order them in an infinite sequence
Uy, Use ...

We now attach at every point %, a dendrite on which the endpoints
are dense (for example a dendrite of WazZEwWSKI or MENGER), which has
only a single endpoint in common with C, and is otherwise disjoint from
C'. We choose the diameters of the attached dendrites so that they con-
verge sufficiently rapidly to zero; in addition we require that no dendrite
has a point in common with one previously attached. Such a construction
is obviously possible. We define the continuum C* as the union of C' with
all the attached continua. It is evident that the continunum C* thus defi-
ned satisfies the conditions of our theorem.

K. MENGER proved that the set of the endpoints of a curve is a G-
set.10) It is possible to prove the same not only for curves but for all
continua.

If a set Pis a Gs-set and is dense in the continuum C, then ¢ — P is
of the first category in C (i. e. the sum of a denumerable number of sets
which are nowhere dense in (). Taking into consideration the above
fact, we can now formulate

Theorem 8. If the set of all endpoints of a continuwm C is dense in C
then the set of all non-endpoints of C is of the first category in C.

Hence each n-dimensional continuum C in which the set of its end-
points is dense is an example of closed set with the following-seemed
paradoxical-property: all points at which this set is locally more than one
dimensional constitute a set of the first category.

The question arises what is the category of the set R(C) in the case
of continua in which R(C) and N(C) are both dense. It is possible to say
that if the set N(C) contains a dense (on C) set of non-cut points of the
first kind, then R(C) is by Theorem 8 of the first category. But if the sets
N(C) and R(C) are both dense in C' and the set N(C) consists of points of
the second kind (i. e. of non endpoints), then R(C) need not be of the first
category any longer — as the following example shows.

1 2
Example. We take the curve y = sin— between x = — — and
x 7

9
@ = + — together with the segment v = 0, — 1 < y < + 1.

7

Every arc of this curve which lies between two successive extrema is
replaced by a closed surrounding strip. The strip shall consist of all points
of the plane which lie on both sides of the original arc at a distance so
small that the boundaries of two adjacent strips have only one point in
common, namely the point where the extremum lies. Two non-adjacent
strips shall have no points in common and the thickness of the strips con-

10) K. Menger: Grundziige einer Theorie der Kurven, Math. Ann., 96, 286.
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verges to zero as  — 0. The segment # = 0, — 1 < y << + 1 remains
without change. The first approximation J; of the curve consists of the
segment = 0, — 1 < y < -+ 1 and the sum of all the strips just defi-
ned. Every extremal point of the original curve will be a cut point of J;
but no other point of J, will be a cut point. In order to obtain the second
approximation J, we replace every strip of J; by a continuum which is
similar to J; with correspondingly smaller thickness but which lies
entirely in the strip and has its ,,ends‘‘ at the extremal points of the strip.
Thus we obtain J,. Carrying on this process to infinity, we obtain the
approximations Jy, J,, ...
We now set

The set J is obviously a continuum irreducible between the points
2 2

T=—— and * = + —. The sets R(J) and N(J) are dense on J. It is
7

easily seen that the set B(J) is no longer of the first category, but of the
second category, since it is a dense Gy-set. But the set N(J) consists only
of points of the second kind and contains no endpoints at all.
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