Czechoslovak Mathematical Journal

Antonin Spacek
Regularity properties of random transforms

Czechoslovak Mathematical Journal, Vol. 5 (1955), No. 1, 143-(151)

Persistent URL: http://dml.cz/dmlcz/100136

Terms of use:

© Institute of Mathematics AS CR, 1955

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/100136
http://dml.cz

YexocaoBanknii MaTeMaTHIeCknil KypHad, T. 5 (80) 19565

REGULARITY FROPERTIES OF RANDOM TRANSFORMS

ANTONIN SPACEK, Praha.

(Received June 29, 1954.)

The purpose of this paper is to establish a number of theorems on
random transforms, which, according to our definition, are slightly
generalized random processes. The properties of random transforms
such as for example almost sure continuity will be considered under
a more general concept of regularity. It seems to be not without inte-
rest to show how, for example, a version of Doob’s continuity theorem
follows from our completely elementary results.

§ 1. The basic space of elementary events is the set F of all transforms f(x)
of a fixed abstract space X == 0 into another fixed abstract spaceY = 0 and,
according to Kolmogorov [1], the o-algebra of random events will be defined
as follows: Given a o-algebra ¥ of subsets of Y the elements of which will be
called Borel sets and let & be a base of B. For each fixed « ¢ X and each fixed
G ¢ @ the set {f : f(x) e G} will be called G-interval. For 4 c X we shall denote
by F(A) the smallest o-algebra of subsets of F generated by the class of all
B-intervals, where z runs over A and @ runs over &. Instead of F(X) we shall
write briefly § and this is our basic o-algebra of random events.

Tt is easy to verify that F(4) does not depend on the choice of the base &,
i. e. we obtain the same o-algebra §(4) if we replace the G-intervals by the
corresponding B-intervals. It is further clear that §(0) = {0, F'} and F(4) c
c §(B) for A c Bc X.
A useful property of the o-algebra of random events is expressed- by the
identity
§— USD), (1)
De®
where D is a class of denumerable subsets of X which satisfies the following fwo
conditions:
the union of all sets from D is equal to X , (2)

3)

each denwmerable union of sets from D ,
is contained in at least one set from D .
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For the proof of (1) we note only that, as may be easily shown, the right hand
side of (1) is a g-algebra of subsets of F' containing the class of all G-intervals
and each term of the union in (1) is contained in §.

The well known fact that each random event is determined by denumerably
.many coordinates will be expressed more precisely by

Lemma 1. To each E ¢ § there exists a set D, e D such that
E=UnN{:{@=9g@}.

geE XeDp

Proof: For 4 c X let us denote by €(4) the class of all sets M) {f: f(z) =

Led

= g(x)} c F, where g runs over F. We see at once that the class 0(4) of all
unions of sets from €(4) is a s-algebra of subsets of F. Clearly, if zyc 4, G e &
and H = {f: f(z,) e G}, then

H=UnN{f: (@) =g@)}eWA)

and hence
F(A)cU4) for AcX. (4)

By (1) to every E € § there corresponds a D, e ® such that £ ¢ F(D,) and there-
fore by (4) E €« A(D,). Using the definition of Y(D,), we see that

N{f:flx) =gx)}cE for ge K,

TeDp

hence,

Uni{f:fx) =g} ck.

geE TeDp
The opposite set-inclusion, which completes the proof, is obvious.
The notion of regularity will be introduced by a transform 7' of the class of

all subsets of X into the class of all subsets of F which satisfies the following
conditions:

if De® and ge T(D) then T(X) 0 ) {f : f(x) = g(x)} =0, (5)
if De D then T(D)eF . (6)

if Ac Bc X then T(B) cT(4), (7)

T(X) + 0. (8)

The example T'(4) = F for A c X shows that the above conditions can be
satisfied simultaneously. Less trivial examples will be considered in §§ 2, 3
and 4.

A wuseful tool for proving the main theorem is

Lemma 2. If T satisfies the sole condition (5) and if T(X) c E e§ then there
exists a set Dye D such that T(D,) c E.
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Proof: By lemma 1 there is a set D, ¢ D such that
if ge F — E = E' then NN {f: f(x) =g(x)} c £'. 9)
@eD,

Let us suppose that the assertion of lemma 2 is not true, i. e. to each set from D
and therefore also to D, there corresponds an %, € F such that

hoe B, (10)
hye T(Dy) . (11)
Because of (5) and (11) there is an f, € F such that
foe T(X), (12)
foe OV {f: f(x) = ho()} . {13)

TeD,

Since by hypothesis 7'(X) c £, we have by (12) f, < E. On the other hand, be-
cause of (10) and (9), it follows from (13) that f, € £’ and this is a contradiction.

In lemma 2 we have used only the property (5) of 7. But from now on we
shall consistently suppose that the transform 7' satisfies all conditions (5), (6)
(7) and (8) simultaneously.

If M c F then M n § means the class of all sets M N F where £ runs over §.
Clearly, the class M N § is a o-algebra of subsets of M. If x is a probability
measure in § then (¥, §, 1) is said to be a random transform or a generalized
random process. It is natural to define almost sure 7-regularity of a random
transferm as follows: The random transform (#, §, u) is said to be almost surely
T-regular or T-regular with probability unity, if there exists one and only one
probability measure v in T(X) N § such that »(T(X)N &) = w(H) for E¢F.
From a well known theorem of Doob [2] it follows at once that (F,F, /1) is
T'-regular with probability unity if and only if u(7'(X)) = 1, where u denotes
outer measure, and we prefer to use this equivalent definition of almost sure
T'-regularity.

Now we proceed to establish the inain result. It is essentially contained in the
following elementary

Theorem 1. A necessary and sufficient condition for a random transform
(F, &, 1) to be almost surely T-regular is that u(T(D)) = 1 for every D e D.

Proof: The necessity of the condition is obvious. Since utilizing (6) and (7)
the assertion of lemma 2 may be completed by 7'(D,) ¢ § and T(X) c T(D,),
hence, the sufficiency of the condition follows at once from the definition of
outer measure.

Although theorem 1 holds without any additional restriction, the applicat-
ion of that result is not useful if the space X is denumerable.

In the rest of this paper, unless explicitly stated otherwise, we shall consistent-
ly assume that X is a separable metric space with the distance function ¢, 1" is
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a separable and complete metric space with the distance function ¢, ® is a
denumerable open base of Y and D is the class of all denumerable subsets of X
dense in X which, as may be easily shown, satisfies the conditions (2) and (3).

§ 2. We shall now give the transform 7' the following concrete meaning:
T'(4) for 4 c X is the set of all transforms from F which are uniformly conti-
nuous in 4, 1. e.

ray =R Gl s eonfen < Al

m=1n=1
0,ms4,6(v,m)<-;

In this particular case T'-regularity means that the random transform (¥, §, u)
is uniformly continuous with probability one.

If X is non-denumerable and Y contains at least two points, it follows from
lemma 1 that 7'(X) does not belong to § and the application of theorem 1 is
useful.

We see at once that the conditions (7) and (8) are satisfied.

Taking into account the separability of the space ¥ we may verify without
difficulty that (6) holds. The corresponding proof will be outlined. Since the
sets in © are by definition denumerable, it suffices to show that for each v,
ze X and each ¢ > 0 we have

{f: e(f(v), f(x)) < e} e F({v, 2}) - (14)

Let us denote by B2 the o-algebra of subsets of the cartesian power ¥ X Y =
= Y2 generated by the class &2 of all rectangles with sides from & and let S be
a transform of F into Y2, which involves the correspondence to each fe I of
the point S(f) = (f(v), f(x)) € 2. Clearly, § is a transform of ¥ onto Y2 and §-!
is an isomorphism between %2 and §({v, 2}). It is well known that the distance
function o(y, z), where (y, z) e Y2, is continuous in the space Y2 with the usual
product metric. Since the class &? is a denumerable open base of Y2, hence,
o(y, z) is B*measurable and (14) follows from the isomorphism S-1.

The sole property of 7' which is not so easy to recognize is (5). But (5) is a
consequence of the following well known

Extension theorem 1. If the transform | of a point set A of a melric space into
a complete metric space s uniformly continuous, then there exists one and only one

" uniformly continuous extension of f from A to the closure 4 of A.

The proof of this elementary theorem may be found in many books on
point set topology, for example in [3].

Applying the extension theorem 1 to all denumerable sets D ¢ X dense in X
we see that the extension of each uniformly continuous transform f of D into
Y to the whole space X is possible, hence, (5) is satisfied. We note that the
uniqueness of the extension was not used.
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Summarizing the above results we obtain from theorem 1

Theorem 2. A necessary and sufficient condition for a random transform
(F,§, 1) to be uniformly continuous with probability unity is that for each denu-
merable set D c X dense in X the set of transforms from F which are uniformly
continuous in D has probability unity.

We see that theorem 2 is in fact an obvious generalization of Doob’s theorem.

Utilizing theorem 2 we may easily obtain an equivalent version of that
theorem first established by Maxx [4].

Theorem 3. The random transform (F,§, i) is uniformly continuous with
probability one, if and only if to each ¢ > 0 and n > 0 there exists an w(e, 1) > 0
such that

wff = max  o(f(v), f(x)) <&} =1—n (14)

2,%e8.0(v,2) < w(e.n)
or each finite set S c X.

We see at once that if the space X is compact and therefore separable, then
each of the conditions in theorem 2 or 3 is necessary and sufficient for the
almost sure continuity of the random transform (F, §, u).

§ 3. Another example of the same type as in the preceding paragraph may
be obtained if 7'(4) for A c X is the set of all transforms from F which satisfy
the Lipschitz condition with a constant ¢ = 0in 4, i. e.

TA) =0 {f:o(f(v), [(x)) < ¢ d(v, x)} .
v,%ed
If the random transform (I, §, ) is almost surely 7'-regular in that sense, then
it is said to have almost surely the Lipschitz property with the constant c.

Clearly, the conditions (6), (7) and (8) are satisfied and (5) follows from

Extension theorem 2. If the transform f of a point set A of a metric space into
a complete metric space satisfies the Lipschitz condition with a constant ¢ > 0,
then there exists one and only one extension of f from A to the closure A of A which
also satisfies the Lipschitz condition with the same constant c.

We omit the proof of this simple extension theorem and write only the final
result which is an obvious consequence of theorem 1.

Theorem 4. A necessary and sufficient condition for a random transform
(I', &, 1) to have almost surely the Lipschitz property with the constantc = 0
18 that

w{f < o(f(v), f(@)) < ¢ O(v, 2)} =1 (15)
for each v, x ¢ X.

Since the Lipschitz property is stronger than, for example, the uniform con-
tinuity, it follows from theorem 4
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Theorem 5. If (15) holds, then the random transform (F,§, p) is untformly
continuous with probability one. '

§ 4. In this last paragraph we shall suppose that X is a Boolean c-algebra

with unity 1, Y = R is the space of all real numbers and ® is the class of all

- denumerable subalgebras of X. To eliminate misunderstandigs we note that
le A for each 4 ¢D.

We see at once that (2) is satisfied and (3) follows from the well known fact
that each subalgebra of X generated by a denumerable subset of X is itself
denumerable.

We shall denote by O the zero of X and to denote unions and intersections in
X we shall use the same symbols as for the corresponding set-operations.

Now let 7' means additivity, i. e.

T(4) = n ;{fif(UUx) = f(v) + f(x)}

v, Ted, VuTed, VOT =
for each set A c X. Clearly, T-regularity of (¥, ¥, ) means additivity with
probability one.

We see at once that the conditions (7) and (8) are satisfied.
Since clearly
{f:fv V) =f() + f(x)} =
— (U ({f:foua) <r}nO@f: flo) > —s} 0 {f: f@) > s + 1)’ N

n <'l£ ({f:foua) >ryn U {f:flv) <spn{f:fx) <r—s})),

where R, is the set of all rational numbers, and the algebras from D are denu-
merable, hence, (6) is satisfied.

The property (5) of T' follows from the

Extension theorem 3. If 4 is a subalgebra of the o-algebra X with the same
unity and the real function f is additive in A, then there exists a real additive
extension of f from A to the whole o-algebra X.

The proof of this extension theorem may be found for example in [5].

Utilizing theorem 1 we can state

Theorem 6. The random function (I, §, u) is additive with probability one if
. and only if
u{f 1 fvV ) = f(v) + f(@)} = 1

for each v,xe X, vnx = 0.

Theorem 6 has a useful application in the theory of conditional probabilities,
as will be shown in another paper.

It is possible to establish a great number of theorems by a simple application
of the general theorem 1. The elementary results contained in the last three
paragraphs serve to illustrate by concrete examples this possibility.
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Peswome

PEI'VJIAPHOCTD CJIYUYANHBIX ITPEOBPASOBAHUI

AHTOH MHOAYEK (Antonin Spa&sk), [Ipara
(ITocrynmio B pepakmuio 29/VI 1954 r.)

Ilox cyuaiinsiM mpeoGpasoBanuem (F, §, p) MBI IOHUMaeM IIPOCTPAHCTBO
F, c-anrebpy § mopmuomecTs mpocrpancrsa F u Mepy BeposTHOCTH 4 B §.
DileMeHTaMu TpocrpaHcTBa I ABIAIOTCA Bce mpeoGpasoBaHMsA f mpocTpai-
crea X = 0 B mpocrpancrso Y = 0. [lana o-aunreGpa B ¢ Gasucom & mommuo-
secTB mpocrpancrsa Y. Crpyrrypy mpocrpamncTBa X MBI He OIDaHHYMBAEM
HUKaKUMU IIpefrososkenusmu. IIpencrapisercs 1esecoo6pasHbIM OpeenThb
§ Kar MEBEEMAJBHYIO ¢-are6py HOMMHOMECTB HpOCTpaHCTBA I, cofepsramyo
Bce MuosrecTBa tuna {f : f(x) e G}, rue x mpoGeraer X, a G mpoGeraer &. § ue
sasucur or BeIGopa Gasmca ©.

Ilycrp ©® — cuereMa CYeTHHIX IIOIMHOKECTB MHOKecTBa X, obuamaromas
cJIeIyIONUMU ¢BOCTBAMIL:

(a) ® morprBaer X,

(6) masmoe cueTHOE COERMHEHNE MHOKECTB I3 D COJEpIRUTCA B OJHOM MHO-
mmecrBe n3 D.

Perynapuocrs ompefiesigerca mpu moMolmu mpeoOpasosanus 7', mepesops-
Lero CUCTEMY BCeX ITOJMHOMRECTB MHOKecTBA X B CHCTEMY BCEX IIOIMHOKECTB

MHOsKecTBa F, ciemyiomuM oGpasom:
ecain D e®D u g e T(D), To

rXuvni{f:f) =g@)}+0, (1)

&xeD
ectn D e®, To

T(D)e§, (2)
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ecoim Ac Bc X, ro
T(B)c T(4), ‘ (3)
T(X) +0. (4)

CrasxeM, 4ro ciydaitnoe mpeoGpasosanne (F,§, u) Oynmer mourm HaepHoe
T-peryasipusiv, eciu p(T(x)) = 1, rie p 06038HAYAET BHEIIHIOI Mepy BepOST-
HOCTH; MMeEeT MeCTO CJIe[yION[as INIABHASM Te(;penla:

Cuayuatinoe npeobpasosanue (I, §, n) 6ydem noumn naseproe T-peeyssprsim
mozda u moavko moz0a, ecau u(T'(D)) = 1daan D € D.

Ty TeopeMy MOKHO NPUMEHUTH K CIEUaJIbHBIM CBOMCTBAM peryJIsApHOCTH.
B caenylomux aByX mpumepax mpepuosaraercsd, 94ro X — MeTpHdeckoe cera-
pabenpHOe NpPOCTPAHCTBO ¢ Merpmkoit d, ¥ — MeTpmueckoe cenapabeiabHoe
1 TIOJBHOE IPOCTPAHCTBO ¢ MeTpuKoit 9, & — cuerHHIl OTKpEHITEHI Gasic mpocTpaH-
crBa Y u uro B ecTp g-asrefpa GopeseBCKUX IOAMHOKECTB IpocTpaHcTBa V.
Ecim © ecrb cucremMa BceX CUeTHBIX TOIMHOZKECTB IpocTpamcTBa X, MJIOTHBIX
B X, 10 yesoBus (a) 1 (6) BEIIOJIHAIOTCSA.

Ecin T'(A) nna A ¢ X sABuseTcs MHO3KeCTBOM BceX IpeobpasoBamuit us F,
paBHOMepHO HenpepuBHLIX B 4, To yeaosusa (1), (2), (3) u (4) BumomHAIOTCH,
U U3 mepBoil TeOPeMH clefyer:

Cayuaiinoe npeobpasosarue (I, §, u) 6ydem nowmu Haseproe paswomepHo He-
npepusHbM M020a U MOAbEO Mo20a, ecau 048 106020 CHEMHO20 MHONCECTNEA
D c X, naomnoeo ¢ X, 6eposmHOCIb MHOMCECMEA 6ceT NPeodpa3osanuii us
F pasnomepro nenpepuisuuix ¢ D, pasta edunuye.

dro rtax HasmBaemas rteopema Jly0a, moropymo, cormacuo I'. B. Mauny,
MOKHO cOpPMYJINpPOBATh CiexylommM obpasoM:

Cayuaiinoe npeobpasosanue (F,§, p) O6ydem nowmu wnaseproe paswomepho
HenpepysHsiM mo2da u moavko mozda, ecau 0as kaxncdozo € > 0 u n > 0 cy-
wecmeyem w (e, n) > 0 max, umo

wmif : max o(f(v),f(2)) < e} =1—n
v, ZeS,0 (v, )< w(e, )
das 4106020 Eoneurnozo muomncecmsa S c X.

Hpyroit mpuMep mpuMeHeHNA IepBO# TeOpeMHI IOJIYYUTCA B TOM CJIydae,
rorpa T'(A4) oGo3Hagaer MHOeCTBO BeexX 1peoOpasoBanuii us F, ymoBiersopAio-
mux B 4 T. Has. yeiosuio Junmmmna ¢ moctosHHoM ¢ 2> 0, T. e.

T4 = N {f: olf(v), f(x)) < cb(v, @)} .
v,Tchd

Venosus (1), (2), (3), (4) onATb-TaKA BHIIOIHAIOTCA, U CIIPABEJIABO yTBEP-
JKJIeHIe:

Cayuaiinoe npeobpasosanue (F, F, 1) noumu naseproe ydosaemsopsem yeao-
suro Jdunwuya ¢ nocmoanuoii ¢ = 0 moeda w moavko mozda, ecau das 4060w
napu v, x e X

pif : o(f(v),f(2)) = cd(v, @)} = 1.
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ITeppy1o TeopeMy MOKHO MCHOJB30BATH IPH PELICHIN HEKOTOPHIX BOIPOCOB
U3 TeopHM ciaydaiinsix MHosecTBeHHEIX (ymkruit. IIyers ¥ — npocrpancrso
nelcTBUTENBHBIX unces ¢ oObranoit Merpukoit, B ecrs g-anrebpa Bcex Gope-
JeBCKMX MHoskecTB, X ecrb g-anre6pa Byns, u © — cmeremMa BcexX CYETHHIX
mopasre0p ¢ ONHAM U TeM ke eluHUIHEM dieMenToM 1 € X. Cucrema D yposie-
TBOpser yeaosuam (a) m (6). B cmenylomem npumepe 7' oGosHavaer ajgauTHB-
HOCTB, T. €. g A c X

T(4) = n {f:f(vV2) = {v) + f(2)},

v,Zed, voTed, V0T =0
rge U M N — TeopeTHKO-CTPYKTYpHEIE oepanuu, a 0 — HyJeBoit a;1emenT B X.
Veaosus (1),(2), (3) 1 (4) BHIIOJIHAIOTCA U, MCHONb3YS IEPBYIO TEOPEMY, IOIY-
9UM CIeAYIOIWi IPOCTOl PesysbTarT:
Cayuaiinan gynryus (F, §, u) 6ydem nowmu naseproe addumueroid mozda
u moavko mozda, ecau

u{f : foVU2) = f(v) + f(2)} =1
dasn ar0boil napet v, x e X, vNx = 0.

ITpuBenennble Te0peMEl ABJIAIOTCA JNIIb IPOCTHMU IIPUMepaMi IpUMeHeHUs
IJIaBHOW TeopeMbl. AHAJIOTMYHBIM 06pa3oM MOMKHO HAWTH pAA JadbHeHIINX
pesyJIbTaToB.
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