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YexoCa0BaNKHi MaTeMATHYCCKHIi KkYypHAT, T. 5 (80) 1955

CONCERNING SPACES OF CONTINUOUS FUNCTIONS

VLASTIMIL PTAK, Praha.
(Received December 22, 1954.)

If 7' is. a completely regular topological space, we denote by C(T') the
linear space of all continuous functions defined on 7'. The space O'(T)
is topologized by means of the family of pseudonorms |xl & = max | 'c(t) s

tek

where K runs over all compact subsets of the space 7. In this way, C(7")
becomes a convex topological linear space. Let us denote by M(T') the
space of all linear functionals defined on C(7"). Now every completely
regular topological space may be imbedded in a space AT' (the Hewitt
closure of 7') so that 7' is dense in 27" and every x ¢ C(T') admits a con-
tinuous extension over A7'. If follows that, as far as the algebraic struc-
ture is concerned, the spaces C(T') and C(hT') are identical. If the topo-
logical structure is taken into account as well, these spaces are easily
distinguished, since, clearly, the space M(7) may be considered as
a subspace of M (hT). Suppose now a space C(T') is given. Since C(T')
and C(hT') are algebraically isomorphic, every member of M (AT') repre-
sents a linear form on C(7'). This form will not be continuous on C(7')
in the general case. It is natural to ask, however, whether it does not
perhaps retain some weakened form of continuity which would enable
us to characterize the members of M (kT') in terms of C(T') only. On the
other hand, let M (hT') be equipped with an arbitrary topology such that
C(hT) and M(hT) are dual to each other. Then M(T') is dense in M (hT').
The question presents itself whether M (hT') cannot be considered in
some sense as a completion of M (7'). Both these questions are closely
connected together and are treated in the present paper, which is a con-
tinuation of the author’s discussion [5] of pseudocompact subsets of
convex topological linear spaces. Most of the results of the present paper
are generalizations of corresponding theorems of [5] and are intended as
a basis for further applications.

The present paper forms a continuation of the author’s discussion of pseudo-
compact subsets of convex topological linear spaces. It turns out that the met-
hods used in [5] and [6] for the case of a pseudocompact space may be adapted
to the proof of similar results concerning the Hewitt closure of an arbitrary
completely regular topological space 7. The main question treated in the con-
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nection between the space M (T') of all linear functionals on C'(7') and the analo-
gous space corresponding to the Hewitt closure 27T'.

The first paragraph contains the essential points of the theory of the Hewitt
closure. The theorems of this section are not essentially new. Most of them have
been (explicitly or implicitly) proved already by HEwrrT. In the present paper
we intend to give a unified theory of the Hewitt closure based on a lemma that
we have established in [5]. It turns out that the proofs can be considerably
simplified if this lemma is consistently applied. It is only because of the short-
ness of the proofs that this paragraph has been included, as it seems to the
author that these ideas are not without interest even if they are used to prove
results which are more or less known. The second and third paragraphs are
devoted to the proof of the main result; the proof is divided into several lemmas,
the most important being a generalization of theorem (1,2) of [5]. In the fourth
paragraph we summarize the results obtained in theorems (4,1) and (4,2). These
results have interesting applications which will be published later.

In this paragraph we prove some simple propositions concerning the Hewitt
closure of a given completely regular topological space.

Let T be a completely regular topological space. We shall denote by C(T")
the linear space of all continuous real-valued functions defined on 7'. Now let
2 € C(T) be bounded on 7. Then x admits a continuous extension over g7
Throughout this paper, the following convention will be adopted. The same
symbol will be used for a bounded continuous function defined on 7" and its
extension on A7'. In this notation, the space of all bounded continuous functions
on 7' coincides with C(8T).

Let T' be a completely regular topological space. A point s € BT will be called
a Hewitt point of the space T if every continuous function defined on T can be
continuously extended over the point s.

This, of course, is meant in the following sense. For every continuous function
« defined on 7 there exists a function x* defined and continuous on 7' U (s)
such that x(f) = x*(t) for every ¢t e 7. Clearly every point f e 7' is a Hewitt point
of the space 7. The set of all Hewitt points of the space 7' will be denoted by
hT. We shall call it the Hewitt closure of 7'.

For our purpose it will be convenient to state the definition of a Hewitt
point in a slightly different form. The following lemma is a trivial modification
of a result which has been used by the author in [5].

(1,1) Let T' be a completely regular topological space. Let s € BT'. Then the follow-

1ng three properties of s are mutually equivalent.

(1) s is a Hewitt point of the space T'
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(2) for every x € C(BT') there exists a point t € T' such that
a(t) = x(s)
(3) for every countable subset S c C(3T) there exists a point t ¢ T such that
z(t) = x(s)
for every x € S.
~ Proof: Let s ¢ T and.let « be an arbitrary bounded continuous function
on 7. Suppose that the relation #(f) = x(s) is not fulfilled for any point ¢ ¢ 7'.
It follows that the function » defined on 87" by the relation v(t) = |z(t) — z(s)]
is positive for every ¢ e 7'. The function w defined on 7" by the relation w(t) v(f) =
= 11is clearly continuous on 7'. Now w can be continuously extended over the
point s, since s € A7'. For this point we obtain w(s) (s) = 1 which is impossible
since v(s) = 0. The existence of a point ¢ « 7' with the required property is thus
proved. o
Now let z, be an arbitrary sequence of bounded continuous functions on 7'.
There are positive numbers 8, such that |z,(t)] < B, for every ¢ ¢ T. For ¢ e T
let us define

o) = 3. g |nlt) — 6] -

We have v(s) = 0. Now if condition (2) is fulfilled, there exists a point ¢ ¢ 7' for
which »(f) = 0. Clearly we have x,(t) = x,(s) for every n.

Suppose now that the point s fulfills condition (3) and let  be an arbitrary
continuous function defined on 7'. For every natural m let us define

Zp(t) = () + m| — @) — m|.
According to our assumption concerning the point s, there exists a point
w e T such that z,,(w) = z,,(s) for every m. For any ¢ e T, let x*(f) = «(t) and
let 2*(s) = 2(w). Take a natural number m and a positive ¢ so that m > |z(w)| +

-+ e. Let
QG =E[teT v (s), |wn(t) — z,(s)] < €]

so that G is an open subset of the space 7' U (s). It is easy to see that, for ¢ ¢ G,
we have x*(t) = x,,(¢) so that «* is continuous on the whole of 7' U (s).

Let T be a completely regular topological space. A set W c T will be called
relatively pseudocompact in T if every x ¢ C(T') is bounded on W.

- (1,2) Let W c T be relatively pseudocompact. Let us denote by W the closure
of W in BT. Then W c bT. ,

Proof: Let « be an arbitrary bounded continuous function on 7', let s be an
arbitrary point of W. We are going to show that there is a point ¢ ¢ 7' such that
x(t) = x(s). According to (1,1) this is sufficient to prove our theorem. For every
t e T let us put v(t) = |x(t) — 2(s)|, so that v is a bounded continuous function
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on 7'. We have v(¢) = 0 for every ¢ ¢ 7' and inf v(w) = 0. Suppose v(¢) > 0 for
welW

every t ¢ T. It follows that the function . defined on 7' by the relation A(¢) v(f) =

= 1 is a continuous function on 7' which is not bounded on W. It follows that

v(t) = 0 for some ¢ € 7'; for such a point ¢ we have x(t) = 2(s).

For the sake of brevity, we shall use the following notations. If 7' is a com-
pletely regular topological space, we shall denote by F(7') or simply by F the
family of all closed subsets of the space 7. Similarly, F¥*(7') is taken to mean
the family of all sets of the form E [¢ e 7', x(f) = 0] where x is a member of
o). ¢

(1,3) Let T be a completely regular topological space. Then the following pro-
perties of T' are equivalent.

(1) the space T coincides with hT

(2) ¢f A c F(T) has the finite intersection property and for every x ¢ C(T') a set
A €A can be found such that x is bounded on A, then the intersection of A is
nonempty and compact.

(3) ¢f A c F¥(T) has the finite intersection property and for every x « C(T) a set
A € A can be found such that x s bounded on A, then the intersection of A is nonemp-
ty and compact, ‘

(4) ¢f Ac F(T) has the finite intersection property and if, for every x e C(T)
and every positive ¢, a set A € A can be found such that the diameter of x(A) is
less than &, then the intersection of A is nonempty,

(5) if A c F¥(T) has the finite intersection property and if, for every x ¢ C(T)
and every positive ¢, a set A € A can be found such that the diameter of x(4) s
less than ¢, then the intersection of A is nonempty.

Proof: Let T = hT. Let A be a system of closed subsets of 7' which has the
finite intersection property. Suppose that, for every « ¢ C(7T'), an 4 < A can be
found such that x is bounded on A. We are to show that the intersection of A
is nonvoid. Take an s ¢ 7' which lies in the closure of every A4 ¢ A. Suppose
there is a function v € C(B7) such that v(s) = 0 and v(¢) > 0 for every f¢ 7.
The function w defined on 7' by the relation w(t) v(f) = 1 is clearly continuous
on 7. According to our assumption concerning A there exists a set 4 ¢ A such
that w is bounded on 4. Consequently there exists a positive « such that w(f) <

1
< afort e A. It follows that, forte 4, we have v(f) = —> 0, which is impos-
6.4

sible since s ¢ 4 and v(s) = 0. It follows that s € A7'. We have thus shown that
the intersection of all sets A, where A runs over A, is contained in A7'. Since
T = AT it follows that the intersection of A is compact.

It is easy to see that the proof of our theorem will be concluded if we show
that the inclusion 7' = AT is a consequence of property (5). To see that, let us
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take a space 7' which fulfills condition (5). Let s € AT. For every x ¢ C(T) let
us put
A@x) = E[te T, x(t) = z(s)]
t

so that A(x) e F*(T'). The system A consisting of all 4(x) has the finite inter-
section property. This in an immediate consequence of the fact that, for any
finite system x,, ..., 2, of elements of C(7') the function X |z;(t) — z,(s)| must
attain the value 0 in some point ¢ e 7. If x ¢« C(T'), the diameter of z(A(z)) is
zero, so that the system A fulfills the condition mentioned in (5). It follows
that the intersection of A is nonempty. Let ¢ ¢ 7" be a point which lies in every
A(x). We have then z(t) = z(s) for every x ¢ C(T) so that s = ¢ ¢ T which con-
cludes the proof.

We use this opportunity to say a few words concerning another question
closely connected with the theory of the Hewitt closure.

It is a wellknown fact that spaces which coincide with their Hewitt closure
(such spaces are termed @-spaces by Hewitt) possess a lot of simple and impor-
tant properties and that most of the spaces occuring in applications belong
to this category of spaces. Anyhow, for the study of the Hewitt closure it is
important to know examples of completely regular spaces which are not @-spa-
ces. An obvious way of obtaining such spaces is to take a pseudocompact*)
space which is not compact. Clearly, if 7' is pseudocompact, we have AT = T
so that 7' cannot be a @-space unless 7' = AT = BT, in other words, unless
T is compact. Hewitt has shown that there exist pseudocompact spaces which
are not even countably compact. Other examples of such spaces have been
given recently by J. Novik [4] and S. MrOWKA [3]. We intend to conclude
this section with another simple example of such a space.

(1,4) Let us denote by 7" the space consisting of all functions ¢ defined on the
interval 0 < p < 1 and subject to the following two conditions:

2) for every s the set E[t(p) + s]isinfinite.
D

Let P be the set of all real numbers p contained in the interval 0 < p < 1.
Let ty e T be given. If p,, ..., p, is a finite set of points of the interval P, ¢ a posi-
tive number, let

Ulty; prs oo Pus &) = Blt e T, |t(ps) — to(ps)| <& i=1,2,...,n].
t

Clearly the sets U define a topology on 7' so that T’ becomes a completely regular
space. To see that, it is sufficient to note that 7' is a subspace of a cartesian
product of line segments.

~ *) A completely regular space 7' is said to be pseudocompact if every continuous
function defined on 7' is bounded on 7'.

416



Let us denote by S the set consisting of all points £, of the form

tu(p) = p"
where » runs over all natural numbers.

We are going to show that the set S is closed in 7. Let us take for that pur-
pose an arbitrary point £, ¢ 7' which does not lie in S. There exists a point p, < 1
so that £,(p,) > 0. Now there are two cases possible.

(1) for every natural n, we have fo(p,) + p;. Then there exists a positive ¢
so that the inclusion

to(po) — & < Do < to(po) -+ &

is not fulfilled for any natural n. It follows that the neighbourhood of the point
t, defined by the set U(t,; p,; €) is disjoint with S.

7n

(2) there exists a natural n such that ¢o(p,) = pj,. It follows that p, > 0 since,
in the contrary case, we should have 0 = pg = £,(p,). Since #, non ¢ S, there
exists a point p; ¢ P such that f,(p,) + p}. Hence p, + p,. Now there exists
a positive number & such that the interval (¢y(p,) — &, {o(py) + ¢€) does not con-
tain any point of the form pg' for m = n. Clearly ¢ may be chosen so small that
Pt non e (L(py) — & to(py) + ¢). It follows that the neighbourhood U(ty; py, p;; €)
is disjoint with §.

The topology of S being discrete, we see at once that is not countably com-
pact. Now let « be an arbitrary continuous function defined on 7'. Suppose
there exist points £, ¢ T' such that |x(t,,)| > m. For every natural m and every

. . 1
natural » there exists a finite set P,, c P and a number 0 < ¢, < P such

that the following implication holds

1
t e Ultps Pouns 0mn) = |2(t) — a(t,,)] < ,,; .

Let P;n = U P, let Q = v P,
Now if ¢ e 7' is a point such that

for every p e P,,, we see at once that z({) = z(t,,). By means of the diagonal
process it is possible to define a subsequence v, of the sequence ¢, such that for
every ¢ « @ the sequence v,,(g) converges to a limit «(¢g), where 0 < x(q) = 1.

Now let R be an infinite countable subset of P disjoint with . Let us order
the elements of the set R into a sequence r,. For every natural m let us define

Wi(q) = Vm(q) forevery g ¢ @,
W(rn) = 7,1; for every natural n,
Wi(p) = 0 for every p e P — (Qu R).
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Similarly, let

w(q) = «(q) forevery q e @,
1
w(r,) = - for every natural n,
w(p) = 0 forevery pe P — (Q U R).

It is easy to see that (i) the functions w and w,, are elements of the space 7,
(ii) for every natural m we have z(w,,) = 2(v,,), (iii) we have lim w,,(p) = w(p)
m
for every p ¢ P. The sequence v,, being a subsequence of £,,, we have
[x(w,)] = |[2(v,.)] > m
which is a contradition.
It would be interesting to know the solution of the following

problem: Does there exist a pseudocompact space 7' such that every com-
pact subset of 7' is necessarily finite?

o

We have thus far considered the algebraic structure of the spaces C(7') only.
It turns out that every completely regular topological space T' may be imbedded
as a dense subset in a certain space kT such that C(T') and C(RT') are algebrai-
cally isomorphic. In the present paragraph we are going to study the connec-
tion between the spaces C(T') and C(AT) when they are equipped with a topolo-

gical structure as well. The most natural topology for spaces C(T') seems to be
the following.

If M cT and ¢ is an arbitrary positive number, let U(M, ¢) = E[xz e C(T)

[¢(M)| = ¢]. The topology of C(T') shall be defined by the postulate that the
system of all sets U(K, ¢) be a complete system of neighbourhoods of zero,
K being an arbitrary compact subset of 7', ¢ an arbitrary positive number.
From now on, the symbol C(T') will include both the algebraic and the topolo-
gical structure of the space considered. Clearly, C(7') becomes thus a convex
topological linear space. The space of all linear functionals on C(7') will be de-
noted by M (T'). Clearly every point ¢ e 7' can be considered as a linear functional
on C(T). We shall not distinguish between points of 7' and the corresponding
members of M(7"). The subspace of M(T') consisting of all linear combinations
of points of 7" will be denoted by P(T'). The weak topology on C(T') correspon-
ding to P(T') will be called the point topology of C(T'). It amounts to the same
as considering C(T') as a subspace of a cartesian product of real lines, one coor-
dinate for each point of 7'.

(2,1) Let T' be a completely regular topological space, K a compact subset of hT'.
Let B be a pointcompact subset of C(T). Let x, be an arbitrary sequence of poitnts
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of B. Let x be a limit point of the sequence x, in the point topology. Then there
exists a subsequence x,, such that

lim @, (w) = z(w)
for every w e K.
Proof: For the sake of clarity, the proof will be divided into several
parts.
1. Let m be a given natural number. For every s ¢ K let us take

K(m,s):E[weK,[xi(w—s)}<—;—L, lgi,};m].

The sets K(m, s) form a covering of the compact space K. It follows that this
covering contains a finite subcovering consisting of sets K(m, z) where z runs
over a suitable finite set Z,, c K.

Now, let W denote the set of all points w ¢ 7' such that a point s e K can
be found which fulfills z;(w) = z,(s) for all 5. For every z ¢ Z,, it is possible to
find a % e T such that z;(h) = z,(2) for all ¢. Clearly we shall have % ¢ W. In this
manner we obtain a finite set H,, c W n 7. The union of all H,, is a countable
subset of W n 7' and will be denoted by H.

2. Let us denote by S the closure (in the point topology) of the set consisting
of all z,. In this section, we shall prove the following assertion.

Let u ¢ AT, v € KT and suppose that
xiu == xiv

for every ¢. Then zu = v for all z ¢ S. To prove this, let us take an arbitrary
z, € S. Then there exist two points u, € 7, v, ¢ 7' such that

Ty = T,
TV = X0
for:=0,1,2,.... Let ¢ be an arbitrary positive number. Since z, lies in the
point closure of the set consisting of all points x,, a natural number j can be
found so that
[(xo — x;)(uy — vo)l <e.
Now
g — xov] = ]xo(u — 1))] = |(x0 — ;) (u — ”)[ = I(xo — %;)(uy — ”o)] <e.
Since ¢ is arbitrary, our assertion is thus proved.

3. This section is devoted to the proof of the following result.
Let w, € W, z ¢« KT and suppose that, for every 1,

lim 2w, = 22 .
m
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Then z ¢ W and the relation

lim 2w,, = x2
m

holds for every z ¢ S.
To see that, let us take first points #,, ¢ K such that

Lty = ZWp,

for every 4. Let x be an afi)itra,ry member of S. It follows from the above con-
siderations that af,, = zw,, for every m. Since all ¢,, lie in the compact set K,
the sequence zw,, = «t,, is bounded. Suppose now that the relation lim zw,, =

m
= wz is not fulfilled. It follows that a subsequence t., can be defined such that
Climat, = A + xz.
The set K being compact, the sequence ¢,, has at least one limit point s ¢ K.
Now if a natural ¢ is given, z,s is a limit point of the sequence zt,,. Since z;t,, =
= x;w,,, the number z;s is also a limit point of the sequence x,w,,; this sequence,
however, has a unique limit point, viz. x;z. Hence

z;8 = lim zw,, = z;2
m

for all <. Since s ¢ K we have thus proved that z ¢ W. According to our prece-
ding result we have also xs = zz. This, however, is a contradiction, since

xs = limat, = A + xz.
This completes the proof. :

4. Now we are able to prove our theorem. Let & be an arbitrary limit point
of the sequence z, in the point topology. In the first section of the proof we
have constructed a countable set H c W n T'. By means of the diagonal pro-
cess, it is possible to form a subsequence z, such that

lim , (k) = (k)

for every k ¢ H. We are going to show that

Lim z,(s) = x(s)
for every s ¢ K.

Let s be a fixed point of K. If a natural m is given, let z,, be an element of
Z,, for which s € K(m, z,,). For every z,, let us take the corresponding ,, € H,,.
We have thus constructed a sequence #,, ¢ H such that

lim z;h,, = ;8
m
for all <.
Now a point ¢ € 7" can be found so that

Xt = xs
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and at the same time
xl = ;8
for all 2. It follows that t ¢ W n T and that
lim 2k, = at
for all 4. Since both %, and ¢ are contained in W, the result of the preceding
section can be applied. We conclude that
lim bh,, = bt

for all b e S.

Now let ¢ > 0 be given. Then there exists a natural m, such that m = m,
implies |xh, — xt| < e. For every natural m we have lim Xl = xhy,. It follows
n

that a number n(m) can be found that such n = n(m) implies

Ix;hm - thl <e.
For every m = m, let

S(m, &) = B[b e S, [bh,, — bt| < ¢] .
b

The sets S(m, ¢) are open subsets of S (in the point topology). Since lim bh,, =

= bt for every b ¢ S, the system of all S(m, ¢) forms a covering of S. It follows
that there exist natural numbers m,, m,, ..., m, so that

S(my, &) u ... u S(m,, ) = 8.

We shall not forget that all m; are = m,. Now let n = max n(m;). We are

1<i<r

going to show that |zt — xt| < 3e.
First of all, let us take an m; such that z, e S(m;, £). Now
oot — at] < |(@, — @) | + |2 (E — b )|+ et — b)) -
Since n = n(m;), we have |(x, — )k, | <e. Since z,eS(m,, &), we have
%, (b, — t)| < &. Since m; = m, we have |%(hy, — t)| < e. This concludes
the-proof. .

(2,2) Let T be a completely regular topological space. Let B be a pointcompact
subset of C(T'). Let B be equibounded on every compact K c kT'. Then B is coun-
tably compact in the weak topology corresponding to M(hT).

Proof: This is an immediate consequence of the preceding theorem if we
take into account the welknown fact that functionals belonging to M(RT')
may be represented as integrals over compact subsets K c AT

In the general case, equiboundedness of a B c C(T') does not follow from its

compactness in the point topology, not even when 7' is compact. We have shown
in [5] for the case of a pseudocompact space 7' that this implication is true,
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however, if B is convex. This result, together with its proof, may be extended
without essential modifications to the more general case considered here.

(2,3) Let T' be a completely regular topological space. Let B be a symmetrical
convex and pointcompact subset of C(T'). Let K c AT be compact. Then there
exists a positive number o such that

_ . o) <o
for every b e B and every t € K.

Proof: The proof relies on the fact that the set B is countably compact
in the weak topology of C(T') corresponding to the space P(AT). For the sake
of brevity, this topology will be called the &-point topology.

If 2 C(T), let |z|, = max z(t). To prove our theorem, it is sufficient to
teK .

show that
sup |b|, <
beB

suppose that sup |b|, = co. Then there exists a b; ¢« B and a ¢, ¢ K such that

beB

bit, > 1. We shall denote by B, the set
B, = E[be B, bt; > 1]
b

so that B, & 0. Suppose now that the points ¢, ..., {, ¢ K have been already
constructed so that the set

B,=E[beB,bt;>i,1<i<n]
b

contains at least one point b,.

The set B being countably compact in the A-point topology, there are non-

negative numbers §; such that §;, = max b(¢,).
beB

Suppose now that [B,|, < n -+ 1. Choose a real number 1 so that
i+ Bi
bnti + ﬁ z )

1 > 1> max

Take an arbitrary b ¢ B. We have then

. b, +(1 —2A)beB
and, at the same time,

At + (1 — 2) b, = byt — (1 — 2) i >4
so that Ab, + (1 — 1) b ¢ B,. It follows that
b, + (1 — )b, <n+1.
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On the other hand, we have

b= (b, + (1 — ) b) — 2b,)

1
1—2 (
whence
1

1—1

o], < (41, .

This is a contradition, since b was an arbitrary point of B. We have thus shown
that the inequality |B,|, <n + 1 is impossible. This assures the existence
of a point b, ., € B, and a point ¢,,, ¢ K such that b, f,,, > n + 1. We have
then

bpr€Bry =EbeB,bt; >1%,1 <1 =n-+4 1]
b

which completes the induction.
Let us put
C,=EbeBbt; =1,1 =1 <n].
b

The sets C, are closed in the Z-point topology and form a decreasing sequence.
They are not empty since C, > B,. The set B being countably compact in the
h-point topology, there exists a point b ¢ B which lies in every C,. We have
then bt; = ¢ for every 4, which is a contradition, since all #; are contained in
the compact set K.

This completes the proof.

In [6], we have introduced the following definition.

Let T be a completely regular topological space. Let f be a function defined on T'.
The function f is said to be countably continuous on T, if the following condition
18 fulfilled.

Let t, e T be a limit point of the sequence t, € T'. Then f(t,) is a limit point of the
sequence [(t,).

(2,4) Let B be a symmetrical convex and pointcompact subset of C(T). Let r
be an arbitrary member of M(RT'). Then r is countably continuous on B.

Proof: Let b, be a limit point of the sequence b, ¢ B in the point topology.
There exists a compact K c 27 and a number A > 0 such that we have |or| < 4
for every x ¢ C(T') which fulfills |2(K)| < 1. According to (2,1), a subsequence
b, can be found such that b, (f) — by(t) for every te K. According to (2,3),
the sequence b, is equibounded on K. It follows that b7 — by which completes
the proof.

(2,5) Let B be a symmetrical convex and pointcompact subset of C(T). Let b,
be a sequence of points of B. Let b ¢« B. Then the following properties of b, are
equivalent: -

(1) the point b is a limit point of the sequence b, tn the point topology,
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(2) the point b is a limit point of the sequence b, in the weak topology correspon-
ding to M(RT).

Proof: Let b be a limit point of the sequence b, in the point topology. Let
Ty, ..., 7, be given elements of M(RT'), let ¢ be a given positive number. There
exist compact K; c AT and a number 2 > 0 such that we have |ar;| <4 for
every x ¢ C(T) which fulfills |z(K,;)| = 1. Put K = u K,. According to (2,1), .
a subsequence b, can be found such that b,,(t) — b(¢) for every ¢ « K. According

o0 (2,3), the sequence b, is equibounded on K. It follows that b,r; — br; for
t = 1,2, ..., p, so that there exists a natural n, with the following property

nZ=ng, 1 =i =p = |byr,—bry| <e.

We see thus that condition (2) is a consequence of (1). The other implication
being trivial, the proof is complete.

We shall need further a trivial remark concerning convex topological linear
spaces. Let X and Y be two dual convex topological linear spaces. Let 4 ¢ X
be symmetrical convex and closed. We shall say that A is generated by a set
McXif

A4 = M.

If M is countable, let us form the set W consisting of all linear combinations

Amg + ...+ Am,

where m; ¢ M, 2|4;| = 1.If 4, are restricted to rational numbers only, we obtain
a countable set H. It is easy to show that H is dense in 4. First of all clearly H
is dense in W. Since W is symmetrical and convex, the closure of W (and there-
fore of H) is equal to W**. We have, however M c W c 4, so that

A=M*c W cA™=4.

It follows that the propositions ,,4 is generated by a countable” set ,,and 4 con-
tains a countable dense subset’’ are equivalent.

(2,6) Let B be a symmetrical convex and pointcompact subset of C(T'). Let B
generated by a countable subset of C(T). Let r e M(RT). Then r s continuous
on B, taken in the point topology.

Proof: According to our assumption and the preceding remark, there exists
a countable set W such that B coincides with the point closure of W. Let ;
be a sequence of points of W which contains all points of W.

Since r ¢ M(hT), there exists a number A > 0 and a compact K c AT such
that

xeC(T), ¢(K) =1 = |er| <2.

Especially, we have
xeC(T), 2(K)=0 = ar=0,
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Let m be a given natural number. For every s ¢ K let us take

K(m,s):E[weK, xi(w—s)]<;)l€, 1§Z§,m]

The sets K(m, s) form a covering of the compact set K. This covering contains
a finite subcovering consisting of sets K(m, z), where z runs over a suitable
finite set Z,, c K. Let us denote by Z the union of all sets Z,,. Let x be a point
of B such that #(Z) = 0. We are going to show that a(K) = 0.

Let t be an arbitrary point of K. For every natural m, let f,, be a point of
Z,, such that ¢ € K(m, t,). It follows that, for m = 4, the following inequality
holds

1
;xi(tm - t)] < ;';L’

so that we have

lim zt,, = xt
m

for every ¢. Our point « lies in the point closure of the sequence z,. We have
shown during the proof of theorem (2,1) that these facts imply the relation

lim «t,, = «f .
m

Now we have zf,, = 0 for every m, the points ¢,, being contained in Z. It follows
that «t = 0. Here, however, ¢ was an arbitrary point of K. This proves that
z(K) = 0.

Let v; be a sequence which contains all points of Z. We are going to show
that, for every ¢ > 0, a natural number = can be found such that

beB, |bv, _S_—:; for ¢=1,2,...,n implies |br] <e.

This, clearly, is sufficient to prove our theorem.
Suppose that, for every natural », a point b, ¢ B can be found such that

1 .
15,04 gz for 1=1,2,...,n

and, at the same time, |b,r| = . The sequence b, has at least one limit point
by € B in the point topology. The functional r being countably continuous‘on B,
we have |byr| = . Now let ¢ be a fixed natural number, ¢ an arbitrary positive

number. The point b, being a limit of the sequence b,, a natural n = max (i, l)
o

can be found such that
I(bn — by) vil <o.

1 . 1 . 3
It follows that |bev,| < o + |00 < o+ - < 2¢. Since both ¢ and o were

425



arbitrary, we have by, = 0 for every v;, so that by,(K) = 0. This is a contra-
diction, since |byr| = e. This completes the proof.

(%,7) Let B be a symmetrical convex and pointcompact subset of C(T) which
contains a countable dense subset. In such a case, the point topology on B coincides
with the wealk topology corresponding to M (RT).

Proof: Let M c B be closed in the weak topology corresponding to the
space M(hT'). Let b, € B, bynon e M. Then there exist r; e M(RT), i =1, 2,...
..., n and a positive ¢ such that

beB, |b—by)r]<e = bnonelM.

According to (2,6) all r; are continuous functions on B taken in the point topo-
logy. It follows that the point b, cannot belong to the point closure of the set M.
The set M is therefore closed in the point topology which completes the
proof. . :

In this section we are going to prove the converse result.

(3,1) Let T be a completely regular topological space. Let r be a linear function
on C(T') such that r vs countably continuous in the point topology on every symmetri-
cal convex and pointcompact B c C(T') which is generated by a countable subset
of C(T'). Then r ¢ M(RT).

Proof: Let us denote by A the system of all sets 4 ¢ F*(AT') such that

xzeC(T), x2(A)=0 = a2r=0.

We may limit ourselves to the case 7 # 0, so that all sets 4 ¢ A are nonempty.
The family A itself is nonempty, since clearly A7 ¢ A. First of all, let us show
that the interscction of an arbitrary finite subfamily of A is nonvoid. In fact,
let A, ..., A, be a system of sets 4, ¢ A with intersection void. Let g, ¢ C(T') be
such that
° 0=gt) =1, A;=E[tehT, g, (t)=0].
12

It is easy to see that the function g defined by the relation g(t) = Zg,(¢) is con-
tinuous on AT and positive for every t € hT. Let us take
g:(t)
g(t)
Let x be an arbitrary member of C(T'). Put x,(t) = x(t) e,(t). It follows that
X =a, + ...+ x, and z,(4;) = 0 so that 2, = 0. Hence ar = 0 which is
a contradiction since x was arbitrary and » == 0.

Let  be an arbitrary member of C(7"). We are going to show that there
exists an 4 e A such that x(A) is bounded. Suppose this were not true. Let us
put

e;(t) =

for 1=1,2,...,n.

P, = E[t ¢ hT, |2(t)| < n]

426



so that the sets P, form an ascending sequence of open sets the union of which
is the whole space AT. There exist functions z, ¢ C(7') such that z,(P,) = 0 and
2,7 = n. Let us denote by Z the subset of C(7') consisting of all z,. Let M =
= Z""", We are going to show that the set M is pointcompact. Let us denote
by S the cartesian product of real lines, one coordinate for each point ¢ ¢ 7'.
It follows that the set Z"" is compact and that M = C(T) n Z"™*. Our
assertion will be proved if we show that Z""* c C(T).

For that purpose, it is sufficient to show that every function p e Z""* is
continuous on every P,. This, however, is clear since on every P, almost all
functions z, are zero. The set M is therefore compact in the point topology,
so that r is point continuous on M. This is impossible since z, e M and z,7 = n.
According to (1,3) the intersection of the family A is a compact subset K c 27"

First of all, we are going to show that there is a number « > 0 such that
|2(T)] < 1 implies |zr| < «. Suppose that such a number does not exist.
Then there are x, e C(T) such that |x,| < I and |@,7| > n. The functions

1 .
—x, (extended to fT') form a sequence which converges to zero in the normed
n

space C(BT). Let us denote by B the closed symmetrical convex envelope of

these functions in C(BT'). This set is compact in the norm topology of C(8T)

and therefore compact in the point topology corresponding to 7'. It follows -
that there exists a positive f such that

1
—ux,r| <

I

n < |ou] < |np
which is a contradition. The existence of a number x with the required property
is thus established.

We are going to show now that we have ar = 0 for every z ¢ C(T") which
fulfills 2(K) = 0. To see that, suppose there is a function x ¢ C(T') such that
z(K) =0, 2r + 0.

Let

p

whence

W = E’[t T, Jalt)] = 5 m]] .

We are going to show that W has a nonvoid intersection with every A4 e A.
In fact, suppose there is an A4 ¢ A such that W n 4 = 0. It follows that

[2(d)] < g for] = .

Let us take now the function z defined by
2(8) = () + B — () — B .
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Ift e A, we have — f << z(t) < B, so that z(¢) + g > 0, z(t) — f < 0. It follows
that z(¢) = «(t), so that 2r = zr. Now [2(T")| < B so that we obtain the following

estimate

|er| = |or| < & sup [2(T)] < Fer| .
This contradiction shows that W n 4 % 0 for every A ¢ A. It follows from
lemma (1,3) that the system A n W has a nonvoid intersection. This is impos-
sible, however, the set W being disjoint with K.

Now it is easy to show that z ¢ C(7), |2(K)| < 1 implies |or| < «. In fact,

ifx e O(T), [x(K)| < 1, the function z defined by

2(t) = a(r) + 1] — Ha(t) — 1]
coincides on K with », so that ar = zr. Since [2(T)[ < 1, we have || < «.
It follows that r ¢ M (A1) and the proof is concluded. ” ]

4.
The results of the preceding sections may be resumed in the following manner.

(4,1) Let T be a completely regular topological space. Let r be a linear form defi-
ned on C(T'). Then the following conditions are equivalent -

(1) 7 is a functional belonging to M (hRT)

(2) r is pointcontinuous on every symmetrical convex and poinicompact subset
of C(T') which contains a dense countable subset

(3) r s weakly continuous on every symmetrical convex and pointcompact
subset of C(T') which contains a dense countable subset

(4) r is pointcontinuous on every symmelrical convex and weakly compact
subset of C(T) which contains a dense countable subset

(5) r is weakly continuous on every symmetrical convex and weakly compact
subset of C(T') which contains a dense countable subset.

Proof: The fact that condition (2) is a consequence of (1) forms the contents
of theorem (2,6). The implications (2) = (3) = (5) and (2) = (4) = (5) being
trivial it is sufficient to show that (1) follows from (5).

Suppose that » fulfills condition (5). Using lemma (2,7) it is easy to see that
r fulfills (2) as well. The implication (2) = (1) is contained in theorem (3,1).
This completes the proof.

- In a similar manner, we obtain the following series of implications.

(4,2) Let T be a completely regular topological space. Let r be a linear form
defined on C(T'). Then the following conditions are equivalent.

(1) 7 belongs to M (RT)
(2) r is countably continuous in the point topology on every symmetrical convex

and pointcompact subset of C(T)
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(3) r s weakly countably continuous on every symmetrical convex and point-
compact subset of C(T) .

(4) 7 s countably continuous tn the point topology on every symmetrical convex
and weakly compact subset of C(T')

(5) 7 is weakly countably continuous on every symmetrical convex and weakly
compact subset of C(T).

. Proof: The fact that condition (2) is a consequence of (1) forms the contents
of theorem (2,4). The implications (2) = (3) = (5) and (2) = (4) = (5) being
trivial, it is sufficient to show that (1) follows from (5). Suppose that » fulfills
condition (5). Using lemma (2,5) it is easy to see that » fulfills condition (2)
as well. The implication (2) => (1) is contained in theorem (3,1). This comple-
tes the proof.

It is easy to see that the essential point of the proof of our result is the theo-
rem (2,1). It is thus natural to ask whether the assumptions made are really
necessary. A simple example which we exhibit below shows that the assump-
tion that K be compact cannot be omitted. When the manuscript of the pre-
sent paper was nearly complete, the author has perceived that the proof of
(2,1) may be considerably shortened. The connection between these two me-
thods of proof is, however, not quite clear, so that the present proof does not
seem to lose its interest. Anyhow, though much longer, it is much more geo-
metrically intuitive. Besides, the simplified method mentioned may be used
to prove further results, which we intend to treat summarily in another

paper.
(4,3) Let T consist of all continuous functions defined on the interval 0 <
Sp=L1LIft, T, t;, T, let us define
(1, 1) = max Itl(p) - tz(P)l .
0<p<1

In this way, the space 7' becomes a metric space, so that 7' is completely regu-
lar.

Let r, be a sequence of rational numbers 0 < r, < 1 and such that 7, is
dense in the whole interval 0 < p < 1.

For every natural 7, let us define a function b, on 7' by means of the following
relation

bi(t) = t(ry) -
It is easy to see that all b; ¢ C(T'). Let us denote by B the subset of C(7') con-
sisting of all functions of the form
(t) = t(p)

where p is an arbitrary point 0 < p < 1. Clearly, the sequence b; is dense in B,
taken in the point topology. At the same time, the set B is compact in the point
topology.
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For every natural m, let ¢,, be defined by

4 tm(p) = P™ .
The point ¢, will be defined by
to(p) =0 for 0=p<1.
Clearly we have ’
lim b,(,) = lim 7" = 0 = b,(t,)

m m

for every i. The function b’ C(T') defined by b(t) = #(1) clearly belongs to the
point closure of the sequence b;. We have, however

b(tﬂb) - 1
for every m, while b(f,) = 0. The relation
lim b(¢,,) = b(t,)

m

is therefore not fulfilled.
Applications of the present results will be collected in another paper.
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Pesowme

O MMPOCTPAHCTBAX HENPEPBLIBHBIX ®OVHKIIUN

BJIACTYMIJI IITAK (Vlastimil Pték), ITpara.
(ITocrynumo B pegaxiuio 22/XII 1954 r.)

Hacrosimass pabora sBIAETCA NMPOMOJIKEHNMEM ICCIe0Bannii aBropa B 00-
_ JIaCTH ICeBJOKOMIAKTHBLIX ITOMHOKECTB BEITYKJIBIX TOIOJOIMYECKUX JINHeii-
HHIX mpocTpaseTs. Jleso B TOM, 4T0, KAK BRIACHACTCS , METOJIB, ICTI0Tb30BAHHEE
B paGorax [5] m [6] pma ciyuad IICeBIOKOMIIAKTHOTO HPOCTPAHCTBA, MOKHO
IPUMeHNTh (HEeCKOJBKO HMX BHJIOMBMEHNB) IIPH JOKAa3aTeJIbCTBE AHATOIMIHBIX
pesyabraroB, kKacawomuxcs o6osoukn Xsiourra (Hewitta) mnpoussossHOro
BIOJIHE PeryJsApHOr0 TONOJOrUYECKOT0 IPOCTPAHCTBA. DBoJbmmHCTBO BTHX
pesyJIbTaTOB IpefcTaBisfeT 0000IIeHNe COOTBETCTBYIONIUX peayianTatoB [5].
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Ecan 7' — BmosiHe peryJssgpHoe TOMOJOTHYECKOE IIPOCTPAHCTBO, MBl 0003Ha-
yum vepes O(T) muHeiinoe mpocTpaHcTBO BeeX HeNpephIBHHX (GyHKImii, ompe-
nexenusix Ha 7. Mpocrpancreo C(T') TomosornsnpoBano Ipm mOMOULH ceMeii-

€TBa ICEBAOHODPM |2|, == max|x(f)], rae K npoleraer Bce KOMIAKTHBIC HO[MHO-
teK
secrsa npocrpancrsa 7. Tawxum oGpasom, C(7') cranoBUTCA BLITYKJIBIM TOI0-

JIOrUYecKuM Jiuneinsv rpocrpancrsom. OGosnauin yepes M(7) npocrpancrso
BCeX JuHeHbX PyHKImonaton onpeaeaenunx ma C(7). Usseerio, uro xanjoe
BIIOJIHE PEryJApPHOEe TOIOJIOTHYECKOe IPOCTPAHCTBO MOsKeT OBITH HOrpYsReno
Brupocrpanctso A7 (o6omouka Xsionrra npocrpancrsa 7'), rax, aro 7' niaorno s 27
u kangoe x € O(7) momycraer HenpepsIBIOE TPOLOIARCIIC 1A BCE TPOCTPAHCTBO
AT. Orcropa ciemyer, 910 ¢ TOYKI 3perus anrcfpamdeckoil ¢CrpyKTyphl 11po-
crpancrsa C(T) u C(AT) rompecrsenun. B e IpUnIMactes Bo BHIMAHNE
U UX TOIOJIOTMYECKAA CTPYKTYpPA, TO HTH NPOCTPANCTBA HETPY/IHO PABINYUTD,
TaK Kak, 04eBHHO, npocrpaHcrso M(T') momuo paccmarpuBarh Kak 10J1PO-
crpaucTBo npocrpaucrsa M (AT). lpenmnonosum Teneps, 4T0 AHO KAKOC-I1160
npocrpaucrBo C(7'). Tar wax C(T) nu C(AT) anreOpanuecru u3oMopirsl, 10
Kamppiil paement npocrpancrsa M(AT) mpepcraviser anueiinyio gopmy Ha
C(T). B obmem coayyae ara gopma ne oyjer nernpepssuoit na C(7). Hanpanm-
BAETCH, OJ[HAKO, BOMPOC, He COXPAHSET NII OHA BCE 7Ke HEKOTOPYIO HeIIpepLIB-
HOCTb, XOTA OB I B 0csrabaennoii opme, KoTopasi mosno/maa Ghl HAM 0XapaKTe-
pusosarhk wieusl M(AT) Tonsro npu momomu C(7). C japyroit croponst npes-
modoskuM, aro B M (AT) BBepena npomsBosabHad Tonosorus raxas, yro C(hT)
u M(RT) peoiicrsennsr gpyr npyry. Torga M(T) miorno 8 M(AT). Bosuuraer
BONPOC, HeMb3s1 i paceMarpuBath M (A1) B HEKOTIPOM CMBICTIC KAaK IOTOJTHe-
e M (7). Otu gBa BomIpoca TECHO CBABAHBI OJUAH ¢ APYIUM M UX o0cysgeHue
€coCTaB/IALT IpefiMeT HacroAnleil paborwr.

ITepsmit maparpad cofepssuT BajkHelimmie TeopeMbl TeOPUH 00OJOYKI
Xspronrra. Pesynaprarsl sroro paspesna He SBJISIOTCA O CYN[ECTBY IOBEIMH.
Boapmas yacrs ux Gbla goxasaHa (B ABHOMH HiN HessBHOH fopme) yie XpIonT-
TOM; OTHAKO B HACTOAIeil 3aMeTKe MBI j{aeM e/IHYI0 Teopuio 06009kl XBIONT-
Ta, ONMUPAIIYIOCS HA BeChbMa IPOCTYIO JieMMY, AOKa3aHHYI0 B IIpeRbIAylei
pabore. OrassrBaeTca, 4T0 MPU UCHOIb30BAHUN DTOI JTEMMBI J0Ka3aTedbcTBa
BeChbMa YIPOINAITCH, YTO M MOCIYHUIO IIOBOOM AJIA BKJIIOYEHHS DTOTO Iapa-
rpada B HacTOAIyIO pabory.

Bropoit u Tpermit maparpas IIOCBAIAIOTCA  JIOKA3aTeNLCTBY IVIaB-
Horo pesyiabrara. CaMo JOKa3aTesbCTBO IOJPA3ie/seTCA Ha HECKOJIBKO Yac-
Tell, M3 KOTOPHIX CaMas BA:KHAA SABJAETCA HEIOCPE/ICTBEHHEIM 0000IIeHueM
TeopeMms (1,2) paborer [5]. [osryuennsie pesysabrarsl copMyInpOBAHEL B TEO-
pemax (4,1) n (4,2).

OTH pesyJNbTATHl JIOIYCKAIOT HHTEPeCHbie IIPUMEeHEeHUs, KOTOphle OYAYT
ony0OIMKOBAHE MO3/IHEE.
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