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Yexocropankmii MaTeMaTHIeCKHil EypHau, T. 7 (82) 1957, Ipara

THE BAIRE AND BOREL MEASURE

JAN MARIK, Praha.
(Received September 14, 1956.)

This paper contains the main results of [5]. It is shown that in
many important cases the Baire measure can be extended to a
Borel measure.

1. Let U be a non-empty family of sets. We say that U is a field if the sum
and the difference of each pair of elements A4, Be U also belongs to A. If A is

a field and if U A, e A (resp. n A, e A) whenever A, A (n =1, 2, ...), then

A is called a o- ﬁeld (resp. O-fi eld) If U is a o-field and if YU « Y, we say that
U is a o-algebra.

If 4,4, ... are sets and if 4,C 4,C ..., U 4, = A4, we write 4, 7 4.
n-1

A non-negative o-additive function x (on a field A) such that u(@) = 0 is
termed a measure (on UA). If u is a measure on a c-algebra A, we put for each
Mcyd

u(M) = inf u(A), where AU, ADM,
w(M) = sup u(A), where A e, ACM.

Let P be a topological space.l) Let & (resp. §) be the family of all open
(resp. closed) subsets of P. Let &* (resp. §*) be the family of all sets E[x;
f(x) > 0] (resp. E[z; f(x) = 0], where f is a continuous function on P. Let
B (resp. B*) be the smallest o-algebra containing & (resp. &*). The elements
of B (resp. B*) are called Borel (resp. Baire) sets; a measure on the system
B (resp. B*) is termed a Borel (resp. Baire) measure.

Given a Baire measure u, let P be the family of all sets 4 C P for which
there exist @, ¢ &* such that

ACUG,,, wl,) <o (r=1,2,..).

1) We suppose that the topology is defined by means of a svstem & (whose elements
are subsets of P) with the following properties: 1) 0, P.e ; 2) Gy, G, ¢ & = G, NGy e
3) G, Cc B=UGB e6.
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We say that p has the property V, if each set 4 ¢ * such that u(4) <
belongs to P.

2. We state now an elementary lemma which is important for further
considerations:

Let P be an arbitrary set; let IR, N be sg)stems of subsets of P and let § e M N N.
Let « (resp. ) be a finite non-negative function on M (resp. on N). Suppose that
the following conditions are fulfilled:

W MM NeNR=>M —NeM, N —MeN;
2) My, Mye M, MO M,= 0= M, UM, eWM, x(M,) + «(M,) =
= (M, U M,);

3) MeM, NeN, MC N = B(N — M) = B(N) — a(M);

4) N e N= B(N) < sup «(M), where M C N, M M

5) NyeMn=1,2,..), >WN,) < o=>UDN,eN, f(UN,) = BWN,).

n=1 n=1 n=1 n=1

For each A C P put

y(4) = sup «(M), where M M, MC A4,

Y(A) = inf (N), where NeN, N DA4.2)
Let T be the system of all sets T C P for which y(T) = y(T) < co; let U be the
system of all A C P such that ANT €X for each T € .

Then T is a d-field, U is a o-algebra and y is @ measure on Y. Furthermore,
NCTC Uand y(N) = y(N) = B(N) for each N e N.

(The proof is not difficult.)

3. Now let the measure x have the property V,. Let M (resp. N) be the
family of all A € §* (resp. &*) such that u(4) < co. If we put «(M) = u(M),
B(N) = u(N) for M M, NeN, then all the conditions of the preceding
lemma are satisfied and we easily obtain the following assertion:

If the measure u has the property V., then

w(d) = inf u(@), where Ge®*, @D A4, (1)
for each A C P, and
w(A) = sup u(F), where FeF*, FCA, plF)< o, (2)

for each A € 9P.

4. We say that:the measure y has the property W,, if u is a Baire measure
and if there exists a Borel measure » with the following properties:

1) Be®B*=»(B) = u(B);
2) Ge BN P=»(G) = u(@);

2) If there exist no N ¢ N such that N > A, we have y(4) = inf § = 0.
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3) Be® — P=9»B)= o0;
4) B e ®B = v(B) = inf »(¢), where G ¢ &, G D B.
Now we can state the following theorem:
Let the measure p have the property V, and let the implications
G, e ENP= w(Gy) + /f(Gz) = H_(Gl ua,), (3)
CoeGNP (n=1,2..), G rG= pu(6,)—> uG) (4)
be valid. Then the measure u has the property W ,.

The proof is based on the following ideas: Let I (resp. N) be the family
of all 4 € F (resp. &N P) such that u(d) < oo (resp. u(4) < ). If we put
(M) = p(M), B(N) = u(N) for M e M, N e N, then it follows from (1), (2),
(3), (4), that all the conditions of Section 2 are fulfilled. It is easy to see that
the corresponding system U contains each open subset of P and that the con-
ditions 1) —4) are satisfied if we write »(B) = y(B) for each B ¢ ¥.

Remark. If the space P is normal, we have clearly
(P = u(@) (5)

whenever F e §, G ¢ &, F C G. It follows easily from (5) that (3) holds in each
normal space.

5. Now we are able to prove the following assertion:

Let the measure u have the property V, and let some of the three following
conditions be fulfilled:

1) P is completely regular and for each F e F*, where u(F) < oo, there exist
compact sets K, such that p(F — U K,) = 0.
n=1

2) P is normal and for each F e §*, where u(F) << oo, there exist pseudo-
compact ®) sets A, such that u(F — U 4,) = 0.
n=1

3) P is normal and countably paracompact.*)
Then u has the property W p.

We have to prove that the conditions (3) and (4) are satisfied. If the space
P has one of the properties 1) or 2), then the proof requires only elementary
considerations. Now let P be normal and countably paracompact; let x have
the property V,. If G, e SN Y, G, /7 G, we choose a set F ¢ §, F C G. Making
use of the theorem which asserts that a normal space P is countably para-
compact if and only if for each sequence U,, U,, ..., where U, e &, U, 7 P,

3) The space 4 is pseudocompact if each continuous function on 4 is bounded.

1) P is countably paracompact if for each countable open covering of P there exists
a locally finite refinement.
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there exist sets D, ¢ § such that D, C U, (n =1,2,...) and D, # P (see [1]
or [3]), we see that there exist ¥, ¢ § such that F,C &,, F, 7 F. By (5) we
get 1(G,) = u(F,) — u(F), whence lim u(G,) = u(F), im u(@,) = sup u(F) =
= ,JG), which proves (4). Because the relation (3) holds in each normal space,
we see that the proof is complete.

Remark. Combining this result with [4], p. 479, we obtain various theorems
concerning the representation of a non-negative functional by means of an
integral [fdv, where » is a Borel measure.

P

6. If J is a non-negative linear functional which is defined on the family
of all continuous functions on a topological space P, then there exists (see
[4], p- 479) a unique Baire measure x such that

J(f) = [fdp
P
for each continuous f. (The measure u is obviously finite and has therefore
the property V,.) For each G« & put
0(@) = sup J(f) ,

where f is continuous, f(x) = 1 on G, f(z) = 0 on P — @G. It is easy to see that

MO = p(@) (c6); (6)
if P is normal, then

(&) = u(@ (Ge®). (7)
If the space P fulfils the condition 1) (Section 5), then (7) holds again. If
P is a completely regular @-space, then there exists a compact set K such

that u(P — K) = 0 (see [2]) and (7) is fulfilled. We see at the same time that
the measure u has in this case the property W,.

Now let P be an arbitrary topological space. If there exists a Borel measure
v such that

J(f) = [fdv (f continuous on P), (8)
then obviously »(B) = u(B) for each B e B* and, consequently,
n(B) = »(B) = u(B) 9)
for each B e %. If, moreover,
(@) = 6(G) (Ge®), (10)

then it follows from (6) and (9) that (7) holds again.

In [2], p. 170, HEwITT raised the following question: Let, J be a non-negative
linear functional which is defined on the system of all continuous functions
on a normal space P. Does there exist a Borel measure » such that the relations
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(8) and (10) are true? It follows from Section 5 that the answer is affirmative
if P is countably paracompact; but we do not yet know a normal space which
has not this property.

If the space P is not normal, it may happen that 6(G) < u(Q) for some open
set G; then there exists no Borel measure v such that the relations (8) and (10)
hold good. Such example (where P is completely regular) is constructed in [2],
pp- 169—170 (Remark 1); but the corresponding Baire measure has the pro-
perty W, again.

Now let 2 be the smallest non-countable ordinal number; let 7' be the space
of all the ordinal numbers £ < Q2 and put P =T X T — {[Q, Q]}. It is easy
to see that we can put

J() = lm f(£n)
[&,m]-12,92]
for each continuous f. Then the corresponding Baire measure has not the pro-
perty W, but it is possible to extend it to a Borel measure.
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Pesome

MEPHI BOPA N BOPEJIf

fIH MAPHUHK (Jan Marik), IIpara.

(lloctymuio B pepakimio 14/IX 1956 r.)

ITycrs P — Tomomormueckoe mpocrpaHerso. Ilyers § (coors. @) — cuerema
BCeX B3aMKHYTHX (COOTB. OTKPHITHIX) IIOJMHOKECTB IpocrpaHcTBa P; mycrh
&* (coorB. &*) — cmcrema Becex MEOsecTB Bupa E[x; f(x) = 0] (coors. Hlz;
f(x) > 0]), rue f — HempepuiBHas QyHKOuUaA Ha mpocrpaHcrBe P. Jlamee mycrsb

252



B (coorB. B*) — HamMeHpmas c¢-anarebpa, copepskamas cucTeMY § (coors.
&*). Heorpumarensuyio o-aajuruBayio QyHKmuio Ha cucreme B (COOTR, B¥)
HazoseM Mepoit Bopess (coors. Bapa).

Hycers p — wmepa Boapa: nyers 9 — cuerema Beex muosmects A C P juia

KOoTOpHX cymecrByor G, e @* rax, 9ro u(@,) < o (n =1,2,...), AC G,

IMpennonoskum, uro mepa u obianaer clegyiommm cBoiictBom: Ecam anlsg*,
wW(B) < o0, T0 Be Y. [lanee nonosxum mist Kampgoro 4 C P
w(4) = sup u(B), rtme BcA, Be®*,
w(4) =inf w(B), tme B DA, BeD*.
B paGore nameueHH raaBHble HJEN JOKAa3aTelbCTBA CJCAYIONIX JBYX
TeoPeM:
Teopema 1. [las aw6o20 A C P umeem mecmo
w(d) =inf (@), e GeG*, G@DHA;
ecau p(A) < oo, 6ydem makuce
‘7 wA) =supu(F), tme FCA, FeF*.

Teopema 2. IIycmb euinoansemes kakoe-1ubo us cac0yowur mpex YCio6ui:
\J
a) IIpocmpancmso P enoane peeyaaprno u das aobozo F e ¥, ede w(F) < oo,

o]
cywecmeyrom komnarimusie muomncecmea K, mar, wmo u(F — U K,) = 0.
- n=1

6) IIpocmpancmeo P nopmasvro u Ous awboeo F e F¥, ede u(F) < oo, cy-

=]
wecmeylom ncesdokomnarmuvle muoyncecmea A, mar, umo u(F — U 4,) = 0.
- n=1

B) IIpocmpancmeo P HOPMAALHO U CUCTRHO-NAPAKOMNAKMHO.

Toeda cywecmsyem mepa Bopeas v, 06aadarowas caiedyowumis c0icmeamu:
o) Be ®* = v(B) = u(B);

B) Ge SNP =G = u(Gd);

Y) Be B3 —P=9»DB) = 0;

3) BeB=vB) =infy(@), tne Ge®, GDB.

IMonpoGHoe moKa3aTeNLCTBO HSTUX TEOpeM IpUBeIeHo B [5].
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