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YEXOCJHOBALKRUN MATEMATUUYUECKHUN KVYPHAIJ

Mamemamuueckull uncmumym Yexocaosayrou Axademuu Hayr
T. 7 (82) IIPATA 15. IX. 1957 r., No 3

A CONTRIBUTION TO GODEL’S AXIOMATIC SET THEORY, I

LADISLAV RIEGER, Praha.
(Received May 18, 1956.)

Some questions are discussed concerning models, dependences and
independences (between some axioms and some theorems) in Godel’s
set theory. (See Kurt GODEL, The Consistency of the Axiom of
Choice and of the Generalized Continuum Hypothesis with the Axioms
of Set Theory, Princeton 1940; quoted as [G].)

One of the main results of the present paperis the following statement:

The existence of Russell’s predicative sets (being an element of
itself) and of the class of impredicative sets is consistent with the
axioms of [G] sub A, B, C‘ E completed by the Generalized Continuum
Hypothesis, provided the axioms sub A, B, C are consistent.

The results of the paper have been communicated at the session of
the Mathematical Society held in Prague on the 28th of May 1956.

1. Introduetion. Some metamathematical notions

The present paper is closely related to Godel’s fundamental treatise [G].
Therefore — and for the sake of brevity — I accept the mathematical and the
logical signs (with little typographical modifications) and termini of [G] and
I do not, as a rule, rewrite the corresponding definitions but I only quote them
in the original notation (by ordinary numerals). In order to distinguish theo-
rems and definitions not due to [G], I denote them by latin numerals. The
reader not interested in technical details may be satisfied by the informal
versions of the main notions and theorems as well as by the related comments.

Basic notions of Boolean algebras and of the lower predicate calculus are
assumed, though the full formalization is not performed but always obviously
possible. Less usual needed notions of mathematical logic will be restated in
the following part of this introductory §. In the sequel, they will often be ap-
plied without quotation. For further purposes, they are stated in a more
general and more explicite (algebraic) formulation than would be necessary
for the purpose of the present paper alone.
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The notion of a theory. An elementary theory') @ = (X, 2*) is an ordered
pair of two sets 2 and X* of propositional functions so that the following
holds:

(I) 2 contains all the propositional functions inductively formed with the
help of an at most countable given set of individual variables, primitive indivi-
dual constants and primitive predicate constants.

(II) 2* is a nonvoid subset of X' of s. ¢. theorems of © so that the following
is true:

(I111) If @, and @, belong to 2*, then the conjuction @, . @, belongs to 2* too.

(IV) If @, belongs to X* and the implication @, > @, is identical?), then
@, belongs to 2*. (As a consequence, all the identical propositional functions
belong to X*.)

(V) If @ = &(x) with an arbitrary free individual variable = belongs to X*,
then the “generalized” propositional function (z) @(x) belongs to X* too.

By an axiomatizable (in the finitary sense — no other will be considered
here) theory @ = (X, 2¥) we understand one such that in 2* there is a pro-
positional function without free variables, say @,, so that @ belongs to X* if,
and only if, @, > @ is identical. If @, has the form A, .A4,... 4, (no 4,

2

1) The fundamental metamathematical notion of a’theory is essentially due to TARSKT,
[T]. “Elementary” means ‘‘without predicate variables”, “theory’ means ‘““‘the formalized
and mathematically idealized side of a real mathematical theory”. The s. c. absolute or
semantical side of a theory (i. e. its relationship to its real objects) and the s. c. prag-
matical side of a theory (i. e. the behaviours and psychical contents related to it), though
perhaps more important than the formal one, remain disregarded here.

2) In the obvious sense of the lower predicate calculus (without identity; for identity
see later).

Note that in this § the symbols like
T, Yy 2y, O, W, L, AL Ay, L, D), PY), ...

etc. are metamathematical (‘‘syntactical’’) signs (variables), i. e. the letters x, y, 2z, ... are
not individual variables, but signs for arbitrary individual variables, the symbol mx
means not ‘“‘there is an @ so that ...”, but it exhibits the fact that we have to do with an
existence-quantifier followed by an individual variable, the letters @, ¥, ... are not pro-
positional functions or abbreviations of them. but signs todenote arbitrary propositional
funct;ions, ete.

Of course, since individual variables, propositional functions, etc. become mathematical
objects (in the sense of metamathematics as a theory of finite configurations of signs of’
the given symbolized mathematical theory), the letters z,y,...®@, ¥, ... etc. are also.
mathematical variables (and moreover, e. g. variables of arithmetics of integers in the
case of arithmetized (,,Godelized*‘) metamathematics).

Writing « = y or w = & we mean that the letters x and y (or w and &) denote the
same individual variable (or constant), whereas writing z, ,==" ¥y, we speak about an.
identity-sign lying between the individual variables x and y (see later).
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being a conjunction) then @ is said to be axiomatized with the axioms A, A,, ...,
.., A,. (In the case of an axiomatizable &, the item (V) follows from the
remaining items by the predicate calculus.)

The algebraic formulation.?) Let L. be the s. ¢. Lindenbaum algebra of
classes [@], [¥], ... of logically equivalent and identity-free prop. functions
D, ¥, ... from X, i. e. the following Boolean algebra: @, belongs to the class
[@,] if and only if both the implications @, > @, and @, > @; are identical
prop. functions (in the sense of the lower predicate calculus without identity),
[@] v [¥] = [@ u ¥] (finite joins),

[@] 0 [¥] = [@. V] (finite meets),

[@) = [~ @] (complement; ~ is the negation sign),

[A] = [@ . ~ @] = O (the zero of L;; @ is an arbitrary, A an arbitrary contra-
dictory prop. function from X),

[V]=[®v~ @] =1 (the unit of L,; @ is an arbitrary, V an arbitrary iden-
tical prop. function from X);

[@] € [P] (the lattice-ordering) is the case if, and only if, the implication @ > ¥
is identical. In addition to the already stated finite operations, there are in
L, the following two infinite operations:?)

I. u [qﬁ*{’“}] = [q2®@)] .

This is the s. ¢. marked (countably) infinite join (i. e. L. U. B.); the symbol
{Zf} denotes the replacement of the free individual variable x by an arbitrary
(primitive) individual constant or variable { of @ wherever z occurs in @; the
asterisk denotes the previous convenient change of bounded individual vari-
ables if this is necessary in order to avoid ambiguity.

mo n [cb{"”}] — [(z) D(2)]

c ]
— the s. c. marked (countably) infinite meet (i. e. G. L. B.) (with the preceding
sense of the symbol).

It is essentially known that a Lindenbaum algebra can be characterized
(independently of its construction by the predicate calculus, i. e. disregarding
isomorphisms) as follows:4) .

(I) (The generalized o-algebra.) A Boolean algebra A may be called a gener-
alized c-algebra relatively to the family 2 of the so called marked (multiple)

3) This formulation is also essentially due to Tarski [T]. See also [M I] and [K-M]. —
So far as we have not the identity, we have not a possibility of introducing a non-primitive
individual constant.

1) See [R I], [R II] and [R III] for more details.
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sequences (more shortly: A is a Qo-algebra) if the following requirements are
satisfied:

(i) (Complement-sequences.)

It {ay,,,... t};q,...,ul € £, then {“;,q,...,t}zooo,q ..... to1€ Q.

(i1) (Join- and meet-sequences.)

a) If{a,, t}:q,...,t:.leQand{bw,a,...,t};q ..... 1€ 82,
then {a, , . U by, ..., z};iq,...,t,u,v,‘..,z 1={Cpq,. ., f,u,v....,z};qu....,t,u,v,...,z:l €,

b) The same for n instead of u.

(iii) (Diagonal sequences.)

If {an, . nim,... n-1€8 (kis afixed integer) and if p,g with 1 Sp < g =<k
are fixed chosen integers, then putting n, =n, = n = 1, 2, ... we get a further

(marked) s. c. diagonal sequence

0

{a'n.,;..,np,l,n,np“,...nq LN RS S £ R N TS | € 0.

(iv) (Cylindric sequences.)

If {an,. . nJm, .. n-1 (K is a fixed integer) and if p, r are fixed integers,
1 =< p <k, then fixing the value of n, by r we get a further s. c. cylindric
(marked) sequence

Yo
{an,..“,np,,,r,np RPN (P8 E n. N yee Mp=1 € Q .

(v) (Constant sequences.)

Any {ay,q,... 35, . ¢-1 With fixed a =a,, ., (p,¢ ...t =1,2,...) be-
longs to Q.

(vi) (The marked infinite joins and meets.)

a) Let {a,, ntu . . n-1€8 (kfixed) be a marked sequence and let p with
1 =< p = k be a fixed integer. Then to each fixed ordered (k¢ — 1)-tuple n4, ...,
Mp_1s Mps1s .- My, Of integers there exists the L. U. B. (in the sense of the
lattice-ordering of A)

@
bnl,..‘,'np__l,np‘,l,...,nk = U Ay, .. . n,

and, moreover, the sequence {b,
to 2. ‘
b) The same for n instead of u (and with G. L. B. instead of L. U. B.).

(II) (The free generalized o-algebra.) Any Lindenbaum algebra L is a genera-
lized o-algebra relatively to the countable family Q of multiple marked se-
quences of the form o

ol BY o E ]}‘” ,
{[ {Em 5(1’ ey Et} D,q,.00.,t=1

-1 belongs

R R T (O NN TIRETE (0 S P [ RIS S PR
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(&ps €y --- &) TUn Wwith p,q,...,t = 1,2,... over all the free individual
variables and constants of X, @(, y. ..., 2) is any propositional function with
the different free individual variables x, y, ..., 2; but in addition, any L, has
the following characteristic property of being free:

An Qo-algebra A is said to be free with respect to Q¢ if the family © includes
an (at most countable) subfamily Q¢ of the s. c. generating (multiple marked)
sequences so that the following is true:

(1) Any element of A occurs as a member in at most one of the sequences
of Q% and, moreover, at most at one place in such a sequence.

(2) Q is the least family with (i)—(vi) containing Q as a subfamily —
and A is the least generalized o-subalgebra of A relatively to .

(3) Every mapping of the set G of all the members of the sequences of Q¢
in any o-algebra B can be extended to a o-homomorphic mapping of A in B.
(G is said to be the set of free generators of the Qo¢-algebraA.)

It is not difficult to prove the following

Theorem: Let A; be o free Q,0-algebra (1 = 1, 2) with the generating subfamilies
0%, Let Q% contain N,; simple, N,; double, ..., Ny, k-tuple, ... sequences (i = 1, 2,

Then A, is o-isomorphic to A, if, and only if, N;y = Ny, Nyy = Ny, ...,
vy Ny = Ny, ... (The mentioned o-homomorphisms and ¢-isomorphisms are
meant in the sense of the marked joins and meets, of course.) Now, the abstract
algebraic characterisation of Lindenbaum algebras can be stated as follows:

Any free Qo-algebra A, the generating family Q° of which contains N, simple,
N, double, ..., N, k-tuple sequences, is a-tsomorphic with the Lindenbaum algebra
Ly of any theory (O = (X, Z*) (without logical identity) with N, unary, N,
binary, ..., N, k-nary primitive predicate constants (0 < N, < §,).

We can and will limit ourselves to the casein which the mentioned characteris-
tic sequence N, N,, ..., N, is a finite sequence of (finite) integers.

Now, we are able to restate the notion of a theory (at the moment without
the logical identity, but compare later) in algebraic terms.%)

By an ¢deal I of a generalized s-algebra A (with the family ©Q of marked
(sequences of elements of A) we mean a nonvoid set of elements of A satisfying
the following conditions:

(1) If @ and b belong to I, then a M) b belongs to I.
(2) If a belongs to I and if a C b, then b belongs to I.
3) Ifa; (¢ =1, 2,...) belongs to I, then N a, belongs to I-provided, of course,

N a, is a marked (infinite) join.
2

5) These formulations are essentially due to Mostowsk1 [M I].
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It is easy to see that: If @ = (2, 2*) is a theory, then all the classes of logical-
ly equivalent theorems of @ form an ideal, say l., of the Lindenbaum (generali-
zed free o-)algebra L. Conversely, every ideal I of L, produces a set 2* of pro-
positional functions, in fact the set-join of classes as elements of I, so that
(&, 2*) defines a theory @ according to (I) (V).

The theory O = (X, X*) is consistent (in the usual sense) if, and only if,.
l,. is a proper ideal, i. e. if I, & L,.

Remark. The stronger property of being w-consistent (due to Godel) can
also be formulated algebraic by replacing the condition I, # L, by the
following postulate :

(4) If the classes [@*{gg}] with a fixed = and for every individual constant ¢
belong to ., then the class [(z) @(x)]" does not belong to I..¢)

It is easy to prove that: @ = (X, 2¥) is complete (in the usual sense, i. e.
each propositional function orits negation is a theorem) if, and only if, I,.isa
prime ideal, i. e. the following condition holds:

(5) If @ U b is in I, then @ or b is in .. The dual property of the m-complete-
ness (due to Tarski) is the requirement:

(6) If [x®(x)] belongs tol,., then there is an individual constant, say ¢, so

that [(P*{Cg}] also belongs to 1.

It is obvious that the w-consistency together with the completeness implies
the w-completeness — and that the w-completeness together with the com-
pleteness and with consistency implies the w-consistency.

By a factor algebra A/l of the generalized c-algebra formed with the aid of
the ideal 1 of A we mean, of course, the generalized g-algebra of cosets produ-
ced by I, a marked sequence of such cosets being one which possesses a marked
choice sequence (of elements of A). '

If a generalized o-algebra B is a c-homomorphic image of another generalized
o-algebra A, then there is an ideal | of A so that Al and B are g-isomorphic. I is the
set of the counterimages of 1 ¢ B in the homomorphism in question. (This is
the s. c. first lemma on isomorphism for generalized o-algebras.)

The algebraic description of a formalized theory with identity. A theory
O = (X2, 2¥) with the s. c. logical identity can be. algebraically described as
follows (as a theory in the previous identity-free sense):

1. Between the primitive predicates of &, there is an additional binary
predicate constant, say ,=°; the corresponding formation of the Lindenbaum
algebra L is as usual.

8) See [H-B] II, p. 274.
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2. Between the theorems of 0, 1. e. in 2*, there are the following propositional
functions:
@) (@,="2), @@, =y2y.=2), |
@@ E(,="y.y,="2)>2.="2),
and all the prop. functions of the form ()
. x
@~y o) > 2|). ]
where @ is an arbitrary prop. function containing x freely.
The corresponding property of the ideal I,. of L is obvious.

The introduction of a new (not primitive) individual constant, say ¢, in
a theory with identity is obviously to be performed as follows:

Let us have in 2* of © = (X, 2*) a fixed theorem of the form
(AzP(@)) . () PY) - D)oy ,="2) .

Then adjoining the fixed sign (; to the given individual constants of @ we
extend X' to X, and L, to L (up to a trivial g-isomorphism).

Now, adjoining any propositional function of the form

(&) = gu(¥(u) . D(u)

to X* we get X7 and from ;. we get Io., (Z* C 27 1. Clg.).

It is noteworthy that then

Lyflpe =Ly /hs. .

Moreover, it can be proved that to any theory with identity & = (X, 2'*)
there is another theory 6 = (X, £*) without identity so that Lz can be g-iso-
morphically immerged in L, and the factor algebras L./l,. and Lz/l5. are
o-isomorphic. (Note that @ can essentially differ from the theory resulting
from @ by the simple omission of the identity-sign, the latter can be finitely
axiomatisable while the former need not be.)

We need not enter into more details here, for the use of the logical identity
in Godel’s formalized set theory (see [G]) can be avoided in a known
manner’) as follows:

1. The axiom (theorem) of extensionality A 3 of [G] converts into the definition
of the identity — predicate, in the form

X ="Y=0@@reX=12eY).
2. We add the following basic substitution-axiom (theorem) A* 3

@)W E) (. =y.xeZ)d>yeZ).

7) Comp. [W-N1.
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Then the above “logical® theorems (*) (on identity) become provable theo-
rems [of such an axiomatic (formalized) set theory] and the described intro-
duction of new individual constants is to be performed just as if the identity
.= were a primitive logical sign.

Hereby, the needed algebraic description of the notion of a theory is
concluded.

Let us add some criticism. Of course, the described notions (of a theory)
are not constructive metamathematical conceptions, since they involve a
certain part of the intuitive set theory (of sets and of sets of sets of natural
numbers, if we denumerate the signs of a formalized (investigated mathema-
tical) theory).

But by specialization to concrete formalized theories, as a rule, these notions,
especially that of the ideal of classes of theorems, become available to the
recursive arithmetics. Moreover, when a concrete finite fragment of a given
mathematical theory is examined then almost all the general metamathematical
considerations can be eliminated by replacing metamathematical proofs and
notions by the direct demonstration of concrete needed examples of formalized
mathematical proofs.

In all cases, the described (algebraic) metamathematical notions may be
understood as a “‘systematical heuristics” of the constructive metamathema-
tics even by a rigorous constructivist. This remark holds for further algebraic
terms of metamathematics as well.

Models and interpretations. In the present paper there is a frequent use
of the notion of a model of a formalized set theory and of the closely related
notion of the interpretation (of a formalized theory in another formalized
theory).

We do not deal with the s. c. absolute (semantical) notion of the model
of a nonformal axiomatic theory, i. e. with the model as a “nonvoid set of
real things and of relations between them (in the sense of the nonformal
set theory) which satisfy the axioms of the theory in question”. Not
denying the importance of this absolute notion of a model we are convinced
that it cannot be examined by mathematical tools (of mathematical
logic) alone. We thus limit ourselves to the s. c. relative and formalizable side
of the notions of a model and of interpretation, as this is obvious in mathe-
matical logic. We state these notions in extenso also in algebraic terms
and also for nonaxiomatizable theories; this may be useful for further pur-
poses.

(1) Let ©; = (X, X), Ly, 5. (for @ = 1, 2) be respectively a theory, its
Lindenbaum algebra and the related ideal (of classes of theorems). When there is
no danger of ambiguity, let the logical constants and individual variables of both
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the @, and @, be the same signs; especially, let @ ,=°y be in X7 if, and only
if, the same identity lies in X5 .
The theory @, will be called the interpreting, while @, the interpreted theory.

(2) Let ¢y, s, ..., @1, ... be the primitive (mathematical) predicate constants
and let £, £y, ..., Cpy - .- be the primitive (mathematical) individual constants
of the interpreted theory.

Let to any ¢u(x, v, ...,t) (of @,) correspond one-to-one a propositional
function @,(z, ¥, ...,t) of @, (with the same free individual variables) and
let to any ¢, (of ©,) correspond one-to-one an individual constant ¢, of 6.

(It has been noted that any introduction of a well defined individual con-
stant does not change the factor algebra of the Lindenbaum algebra given by
the ideal of classes of theorems of a theory — an obvious g-isomorphism dis-
regarded.) ;

We say that the ¢, and the {,, of @, are interpreted by the corresponding
o, and C,, of O,. ’

(3) Let the following condition of correctness of the interpretation hold:

Every theorem @ of @, goes into a theorem @ of @, whenever each primitive
constant occuring in @ has been replaced by its corresponding interpreting
sign (in the previous sense, and under a suitable change of bounded indi-
vidual variables in order to prevent possible ambiguity).

In this case we say that the theory ©, has been correctly interpreted vn the
theory ©,.

Let us restate the concept of “correct interpretation” in algebraic terms:

Let L; denote the generalized o-algebra as the subalgebra of L, generated
by the “interpreting” classes of the form [p,(...)].

Note that the family of infinite marked sequences of elements of L, clearly
is the minimal family with (i)—(vi) (of p. 326) containing all the sequen-es (of
classes of equivalent propositional functions, i. e. of elements of L) of the

form 1 | B e

(Note further, that L; is not more free, in general.)

Then the set Ly n ;. = I, is an ideal of L, consisting of all the classes of
logically equivalent propositional functions of ©®; formed with the help of
interpreting signs and proved in 0,.

Now take account of the fact that L is a free generalized o-algebra.

This means that the already described interpretation correspondence trans-
fered to the related classes df logically equivalent propositional functions by
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the correspondence [@i(---)] — [px(...)] defines the s. c. interpreting o-homo-
morphic mapping, say t, of the algebra L, into the algebraL,.

Clearly then the set of images "l . of elements-of the ideal I . is an ideal
of L.

Now, we can state: The interpretation ¢, — ¢, &, —> Cp, 0f @, in O, is correct
of, and only if,

” B 3
Vige Ly hpu =1,

Let this condition be fulfilled. Let X and X* denote the sets of propositional
functions with classes in L, and in'I, respectively. (Of course, there is 2, € 2,
Iyt

Then we define: The ordered pair (X, 27) is the model of the theory @, in
the theory O, defined by the given correct interpretation.

(This concept of a model differs somewhat from that of MosTowskr (comp.
[K.-M.] p. 258) but.it seems to be in accordance with that of [G], where an
often implicit use is made of the (undefined) termini such as “holding in the
model”’, “an ordinal number of the model in the model” ete.).

The set 2 is said to be the set of theorems of the model (X,, X¥), L, is said to
be the algebra and 1, is said to be the ideal (of classes of theorems) of i, while
L,/1, is the s. c. factor-algebra of the model (X, 27).

There are two further important ideals given by the correct interpretation,
i e.

a) the set of counterimages I, = =1, of I, =L, n I .. Of course, I, C1,,
I, being an ideal of L .

b) the ideal I, of Ly generated by the set 1"l .. Of course, there is I, 21 ..

Denoting by @5 and @} the theories with the given Lindenbaum algebras L,
and L, respectively, but with the new ideals I, and I, respectively, we can call
Oy the secondary interpreted, and OF the secondary interpreting theory. O is

weaker than ©,, OF is stronger than 6,.%)

Clearly (X, 27) is also a model of the secondary interpreted theory ;.
Analogously, the given interpretation induces a model, say (X, 27%), of @,
in the secondary interpreting theory 67 .

Let us now define: A correct interpretation and the related model are said to
be true if the factor algebras of the model and of the interpreted theory are
a-tsomorphic (the isomorphism being induced by the interpreting homo-
morphism). '

Then (by Lemma I on isomorphism) the following statements are easily
proved:

9) In the sense of inclusion of corresponding ideals (the identity not excluded).
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The model (X, 2) is a true model of 0, in O, if, and only if, 1, = I ..

The secondary model (X, £7%) is always a true model of the (given) inter-
preted theory ©,.

The (given) model (X, ) is always a true model of the secondary interpreted
theory OF.

In the present paper, we have the following special situations only:

Neither @, nor @, have a primitive individual constant.

0, (¢ = 1, 2) both have three primitive predicate constants, i. e. two unary,
M,(.) (“to be a set”) and Cls,(.) (“to be a class””) — and one binary (.)€ (.)
(*“. belongs (= is an element of) to .”).

(Note that M; and Cls; can be made superfluous by a slight modification of
axioms of [G], see e. g. [M II], but we will maintain the original version of
[G] since this simplification is unessential).

The ideals I . (i = 1, 2) always contain the classes of propositional functions
of the form of axioms sub A, B, C of [G]. But note that while the same is true
for the ideal I,, this need no longer be true for the ideal I;.

We say that the theories O, (i = 1, 2) under the already stated assumptions
are Godelian set theories. It is noteworthy that while the secondary interpreted
theory is, of course, a Godelian as well, the secondary interpreting theory
need not be.

Sometimes, both the @, will be axiomatic theories and to the basic axioms
sub A, B, C some further axioms will be added, e. g. the axiom D or E (the
strong Gode’ls axiom of choice) or the s. c¢. Godel’s axiom of constructivity
(see [G]) or also ev. an axiom requiring the existence of predicative sets (of
Russell), or the generalized Continuum-Hypothesis — etc.

In the case of the original Gddel’s model /4 of [G], we have the following
situation:

The interpreting theory &, (by Godel called the “system X”°) is an axiomatic
theory with axioms sub A, B, C, D of [G].1?)

The interpreted theory 0, is an axiomatic theory with axioms sub A, B, C, D
and with the s. c¢. axiom of constructivity V = L as an additional axiom.

The interpretations are as follows: M,(X)(Cls,(X)) of @, are respectively
interpreted by the propositional functions expressing that “X is a constructive
set (class) of @,”. X ¢,Y is interpreted by X e Y with constructive X, Y.

It is noteworthy (and easy to see from [G]) that Godel’s 4 is a true model
of O, 1 6.

In our § 2 we will encounter the following generalization of Godel’s situation:

0, is an arbitrary Godelian set theory.

10) With the already stated modification, if wished.
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0, is an axiomatic set theory with the axioms sub A, B, C of [G] (but not
stating D as an axiom) and with an appropriate generalization of the axiom of
constructivity.

The interpretations are the same as in Godel's 4 (with the difference, of
course, that the concepts ‘‘constructive set (class)’ must be now defined some-
what more generally, i. e. without use of the axiom D).

The resulting model need no longer be true.

In our § 3, using the results of § 2, we deal with quite another kind of
models (and the need of the notions already introduced in § 1 will then be
clearer).

Let us conclude this introductory § with a semantical note. Concerning the
relation of the absolute and the relative notion of a model (of a formalizable
theory), we can, of course, speak about the absolute model of the interpreted
theory whenever the interpreting theory has such a model; but such an intro-
duction of the “absolute” model of the interpreted theory, of course, is not
““absolutely absolute’” since it refers to another absolute model.

What is now the basic theory possessing a “really absolutely given” abso-
lute model?

Some mathematicians and logicians are convinced that without any refe-
rence to empirical sciences, the s. c. intuitive theory of (“‘absolute’) natural
numbers is such a basic theory; the well known theorem of Skolem-Léwenheim
would then ensure an absolute model of each formalizable consistent theory
(in the domain of absolute natural numbers). The autor’s opinion is that this
point of view can be criticized and that the important but unclear notion of the
absolute model cannot be clarified without the aid of real sciences on the
one hand and scientific philosophy on the other.

®

2. The aveoidance of the axiom D

In the preceding §, there has been stated what is the aim of § 2.

Let us consider an interpreting Gédelian set theory ©,.

First, following step by step Chapters I—1IV of [(], we shall build a certain
portion of O, as based on theorems of the form of the axioms sub A, B, C of
[G] alone, i. e. without any use of the axiom D. (This possibility has been
already stated without proof by Godel himself in [G].)

After having introduced the suitably generalized notion of constructivity
(of sets and classes) in @, (i. e. after this notion has been made independent
of the axiom D) we can take the axiomatic set theory, say 6,, with axioms
sub A, B, C and with the generalized axiom of constructivity alone, for an
interpreted theory. Then we form'the generalized Godels model A, (of
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constructive sets and classes of @) and we verify its main properties as in
Chapters V—VII of [G].

Since it follows easily that (in @,) the axiom D is a consequence of the
generalized axiom of constructivity, the main result of Godel (i. e. the de-
duction of 2% =, , from A, B, C, D completed by the axiom of constructivity
V = L) remains analogous in @, and in 4, as well.

Both of these preliminary results, i. e. the constructed part of a Godelian
set theory without axiom D and the slightly generalized Godels model will
be applied in the sequel.

For the sake of brevity, not every obvious step of this program will be
performed in detail. '

The first (immediate) consequence of D in [G] is the
Theorem 1.6. (x) ~ (x € x), (i. e. a set is never an element of itself).

This theorem cannot be admitted to be a theorem of @, so far it has not
been deduced from the theorems (axioms) sub A, B ,C alone; it turns out later
that this deduction is impossible.

The second (also immediate) consequence of D in [G] is the

Theorem 1.7. ~ (fz, ¥)(x € ¥)(y € z), (i. e. there are no two sets so that the
first is an element of the second, whereas the second is an element of the first).

The same remark as to 1.6 applies to 1.7.

Hereby the examination of Chapter I of [G] is finished, since other
theorems and definitions of this chapter do not depend on axiom D.

Let us proceed to Chapter II of [G].

The next theorem proved with use of D or of 1.6 or of 1.7 is the following
general metamathematical existence theorem M 1:11)

.

If the sign @(x,, ... x,) denotes a primitive propositional function (without
quantified class-variables, see [G]) not containing free set variables different
from x;, ...z, (not necessarily containing all of them), then there exists a class
A so that for arbitrary sets zy, ...x,, the prop. function ,(x,, ... x> € A" and
the prop. function denoted by the sign ¢(x,, ...x,) are equivalent (i. e. their
equivalence is a theorem).

Surveying the proof given in [G], we see what follows:

Of the Theorems D, 1.6 and 1.7, Theorem 1.6 alons has been used exactly
once, i. e. in the first step of the inductive argument of the proof — and con-
cretely in the exclusive case of ¢(z,, ... ,) = ,x, e, (1 < < n) only. Then
the void class 0 is taken for A of the theorem, in view of 1.6 and Def. 2.1.

1) In its‘origina,l form M 1 merely is a theorem-scheme (since ‘p(xy, ..., x,)° is not
a sign of the theory, but of the metatheory). ) ’
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In the remaining cases of @(xy, ... %,) = x,ex, with p £ ¢, 1 < p < 2,
1 = ¢ = n, the two subcases p << ¢, ¢ << p are carried out with the help of
axioms sub B (with B 1 mainly) and without any use of D or 1.6 or 1.7.

But consider that z, ,=* x, with p + ¢ has never been excluded, and more-
over, that in B 1 of [G], 1. e. In
HA(x, )2y e A =z ey)
there is no exclusion of z,=°y. Hence the exclusivity of the case p = ¢ in
@y, ... x,) = Zpex,, (I1=Zp=n1=qg=n)
must be apparent only.
Indeed, let the case p #+ ¢ be the only initial case of the inductive argument

of the proof of M 1 of [G]. Then the case p = q is automatically carried out in
a further step of the induction, namely with '

(X, - oes Ty) = (X, € 2y) - [(X) (X € 2, = X e 2,)]

using the equivalence (in view of A 3)
[(pexy) . () xew,=0xcx,)] =2, 2, .
Hereby, theorem M 1 remains true for our 6.

Theorems M 2—M 6 then follow by purely metamathematical reasons and
remain valid for our @,.

Examining in detail the remaining text of Chapter II of [G] we see that, of
the statements D, 1.6, 1.7, the Theorem 1.6 alone has been used once only,
namely in the proof of Theorem 5.31 ~ M(V) (i. e. the universal class V of all
sets is not itself a set).

Let us give another proof not using D or 1.6 or 1.7.

Suppose ~ M(V) is not a theorem of ©,. Then M(V) would be a theorem of

A B

a consistent (Godelian set) theory 0, stronger than ;.

A
Since B C V for every class B, hence every class is a set in @,, by theorem
5.12 (proved in [G] without any use of D or 1.6 or 1.7), i. e. proper classes do not
A
exist in 6,.
A
Now, the class P defined by the equivalence z ¢ P = ~ (z € z) exists in @,
in view of the already proved theorem M 1.

" But since M(P) holds in él, hence setting = = P we get P e P = ~(P ¢ P)
i. e. the well known s. c. Russell’s contradiction. (But compare Theorem IV.)
This proves Theorem 5.31. (Note that no use is made of the consistency
of the axioms sub A, B, C of [G].)

Hereby, all the theorems (and the related definitions) of Chapters I and
IT of [G] can be seen as valid in our 0,.
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Proceeding to Chapter ITT of [G], we first need a new, more genoral notion
of ordinal (and of ordinal number) than the Def. 6.6 of [G] gives, i. e. we
need a formulation not based on the axiom D, or on 1.6 or on 1.7.

This is reached by the following essentially well known Definition I (comp. e.
g. [K-M], pp. 247—): .

In @, a class X is said to be an ordinal, if the following conditions a:, b:, ¢:
are satisfied:

a: fxe X, thenx C X

b: If z e X, y e X, then at least one of the cases x =y or x ey or y e x is
true (in ©,).

c: Toeachsetz + ¢ with 2 C X there exists aset ysothaty exzandx .y = ¢
is true (in 6,).

In order to complete the definition, let us add the following conventions:

d: (The same as 6.61 of [G]). An ordinal which is a set is called an ordinal
number.

e: (The same as 6.62 of [G].) The class of all the ordinal numbers (existing
by Theorem M 1) may be denoted by the sign On; i. e. ¢ On = x is an ordinal
number in the sense of the previous items a: b: c. d:.

Let us use in @, all the definitions and signs of [G] based on Definitions 6.61
and 6.62 alone.

It is easy to see the equivalence of Definition I and of Definition 6.6 of [G]
when the axiom D is assumed in the theory &, in question.

Not so evident is the fact that Definition I suffices to ensure, in view of A,
B, C of [G] alone, all the theorems on ordinals of Chapter III of [G] needed to
the notion of constructivity and to the construction of the (generalized) model
A of [G].

This may be shown in the sequel; unnecessary lemmas of [G] will, of course,
be disregarded.

Theorem 6.7. Let X be an ordinal. Then the following statements are theorems
of O,.

1: X 4s well ordered (in the usual sense) by the relation e.

2: Every set w with w e X 1s identical with the set of all the sets x preceding
(in the sense of 1:) the u.

Proof. Suppose X + 0 for the case X = ¢ is trivial.

(i) There is ~ (z € z) for each x ¢ X, since otherwise z ez, i.e. {x} Cx C X
(by a:) for a certain « € X, which would give ¢ + {xr} =y . {z} for every y € {x}
— in contradiction to c:

Hence the relation e is irreflexive on any ordinal X.
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(ii) If z ¢ X, y € X, then x ¢ y is incompatible with y € z. Indeed, otherwise
by a: {#} Cy C X and {y} C « € X would imply {x} C v . {z} and {y} C . {zy},
(by meeting with {xy} both the inclusions).

Hence 9 + z . {ay} for each z € {xy} © X — in contradiction to c:

Therefore by b: we have the trichotomy: either x ey or yex or x =y
whenever z € X, y ¢ X and X is an ordinal, in view of (i) and (ii).

(iii) Suppose x € X, y e X, ze X, x € y, y € 2, where X is an ordinal.
By (ii), # = z is excluded; we shall exclude z € z too. Indeed, z e z would lead
to the following contradiction:
Form the set {a} + {y} + {z} = {ayz} € X.
By supposition, we have {z} C y, {y} C 2, {t} C z, whence
0+ {2} = {z} . oy} C . aya}
0 + {a} = {x} . {wyz} Cy . {ayz},
0+ {y} = {y} . {wyz} C 2z . {wyz} .
Therefore u . {ayz} + 0 for an arbitrary u e {xyz} in contradiction to c:
Hence the relation ¢ is transitive on X.
Hereby, the ordinal X is shown to be ordered by the relation e.
From a: (of Definition I) we immediately infer (by M 1) the statement 2:
of the theorem.

In order to finish the proof of the well-ordering of X by €, suppose § + ¥ € X.
Take an arbitrary yeY. If y .7 = 0 then all is proved. Let y .Y = 0.
Since y . Y is a set (on account of theorem 5.12 holding in 6, including its
proof), there exists, by ¢:, aset z withzey .Y, 2.y .Y = 0. By the proved 2:
of the theorem, it is clear that this z is exactly the first z with z ¢ ¥ in the
sense of the ordering in question.

Hereby, Theorem 6.7 is proved in &,.
Corrollary of Thm. 6.7. Every element of an ordinal is an ordinal number.

Theorem 7.12. If X and Y are ordinals, then exactly one of the cases X € Y,
X =Y,Y e X is true.

Proof. (i) At least one of the cases must occur:

Clearly X .Y is an ordinal by Definition I.

By B2, B3, X =X.Y + (X —7Y) with disjoint summands. Without
loss of generality, suppose X — Y =+ ¢ if X # Y. [Otherwise (i) is proved.]

Then the first y ¢ X — Y is an ordinal number so that y = X . Y. Writing
Y=X.Y 4+ (Y — X) with disjoint' summands, we see that ¥ — X =
since otherwise the first z¢Y — X would be identical with the already
defined y ¢ X — Y, which contradicts the relation (Y — X).(X —Y) = 0.
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Hence ¥ = X .Y = y is an ordinal number and y = Y ¢ X is true in 6,.
(ii) At most one of the cases occur; this is clear by thm 6.7.

Theorem 7.14. The relation Y € On holds for every ordinal Y.
Proof. The corrollary of Thm. 6.7.

Theorem 7.16. The class On s itself an ordinal.

Proof. The requirement a: of Def. I is given by Thm. 7.14. The requirement
b: of Def. I is given by Thm. 7.12. The requirement c: follows by the argu-
ment used at the end of the proof of Thm. 6.7.

Theorem 7.161. The class On (and hence any class of ordinal numbers) s
well ordered by the relation e.

Proof. Theorems 7.16 and 6.7.

Remark. By 7.161, the s. c. principle of transfinite induction is ensured in
0, if we understand the proof by transfinite induction to be a reductio ad
absurdum of the supposed existence of an ordinal number violating the
statement to be proved.

A corresponding remark is valid concerning the principle of transfinite
construction in 0,. (We do not state them explicitly — comp. 7.5 of [G].)

Theorem 7.17. The class On is a proper class (i. e. it is not a set.)

Proof: If On were a set, then by Thm. 7.16 it would be an ordinal number,
whence On € On, which is impossible by 7.16.

Theorem 7.2. On s the only ordinal not being an ordinal number.

Proof. If X % On is an ordinal, then X ¢ On by Thms. 7.12 and 7.16, since
On € X is excluded by Thm. 7.17 (and by A 2). Therefore X is an ordinal
number, q. e. d.

Observing now which of the statements about ordinals is in fact used in the
sequel of [G], we see that these are the already (in @,) proved theorems alone.

Especially, the definition of Godel’s ‘“‘enumeration-function” F and the
related definitions 9.4 and 9.41 (of ‘“constructive set”” and of “‘constructive
class”) remain valid in ©, and the whole following construction of Godel’s
model 4 (see chp V) can be reproduced word for word in @, and gives the
model called 4, .

Now, take the axiomatic set theory, say ©,, with axioms sub A, B, C and
with the axiom of constructivity (in the already generalized sense, see
Defs. 9.4 and 9.41 of [(F]) as an additional axiom.

The verification (in @,) of axioms of @, for the (interpreting) termini of
A, (the interpretation being that of [G]) remains also almost exactly the same
as in Chapter VI of [G], the axiom D disregarded, as far as it is not supposed
in 0,.
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The only difference is in the verification of the (generalized) axiom of con-
structivity; more precisely, we have only to give another proof of the decisive
theorem 11.31, as stated as follows.

Theorem 11.31. The “class” On,  of “constructive ordinal mumbers” (i. e.
of “ordinal numbers” of the model A in this model) equals to the class On of the
original ordinal numbers of 0, 1. e. On ., = On holds in ©.1%)

Proof. Denoting (as in [G]) constructive sets and classes with the bar, we
have the following definition of the class On,  (see Def. I).

A constructive class X by definition is a constructive ordinal if the following
implications can be proved in &:
3{1@: xeXD xEX

b1():b‘cg}e;\*3(ie%])v’?l 2)v(x=17).
0 Xogyllyea)w.y = 0)].
Then zeOn, = (z is a constructive ordinal number) = (z is a set and

a constructive ordmal) (whence z = z is a constructive set, see [G]).

First, prove On, C On: Indeed, the conditions a,, : and {) 40° im})ly the cor-
responding conditions with arbitrary x and y instead of x and y, since the
implicans in both cases is wrong if x or y respectively are nonconstructive
sets.

In order to verify the condition corresponding to ¢, : though with z, y

instead of z, 4, we take an y with y e x and with as small an x as possible so
that F'x = y. (Such an « exists, since by z € X every element of z is construct-
ive.) Then clearly = .y = 0, since otherwise there would be a constructive
u with e z . y and therefore with F'ff = u, f < «, u € «.

Second, suppose On,  c On and draw a contradiction.

Let » be the smallest nonconstructive ordinal in the class On — Ony, .
Since every f# with f ¢ v is constructive, we get » = On, . Hence On,  is a set.
This leads to a contradiction, since (by § 2 reproduced in the model 4,) Ony,

needs to be.a ‘“proper class” (in the sense of the model 4,) and therefore a.
proper class (in the sense of @) also.

The (slightly generalized) theorem 11.31 of [G] is thus proved.

In order to verify V = L (i. e. the generalized axiom of constructivity)
for Ag, we have only to observe that Gddel's generalized function F, (as

redefined now in the model 4,) indeed does not differ from the original F' (as
defined in the theory 0).

12) The original version of 11.31 uses the notion of “to be absolute” which is not
needed explicitely here.
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Hence the (generalized) axiom of constructivity is a theorem of the model
Ao, q. e. d.

Now it is easy to prove the following

Theorem I. The axiom D is a consequence of the axioms sub A, B, C and of
the (generalized) axiom of constructivity.

Proof. Let D not hold in a Godelian set theory & (no matter whether
axiomatizable or not) and let the generalized axiom of constructivity (in the
already described sense) be true in 6.

Then there exists a constructive class 4 == ¢ so that for each uwe 4 we
have u . 4 + 0.

By the (generalized) axiom of constructivity, there exist a set v and a smallest
ordinal number x so that F'« = v ¢ A, where F is the (generalized) Godel’s
function (of [G], see 9.3).

Since v . 4 + 0, there exists a further set w and an ordinal number g as
small as possible, so that F'f = wev. 4.

In view of Theorem 9.5 (valid in ®) by wev we get f < x in contra-
diction with the definition of «.

Hereby the model 4, satisfying the (generalized) axiom of constructivity
satisfies the axiom D too.

The model A4, %) need no longer be a true model of ®, (in the sense of our
§ 1), since e. g. if there are inaccessible ordinals in the interpreting @,, then, as
it is easy to see, there are inaccessible ordinals in 4, as well, whereas in the
interpreted @, no- inaccessible ordinals need occur. (Indeed the hypothesis
of inaccessibility is independent of axioms A, B, C completed by the axiom
of constructivity; this is easy to see from [K]. Of course, to this purpose we
have assumed the consistency of this hypothesis.) Hence we conclude (in
view of [G]) with

Theorem IL. The (generalized) Gidel’s model A, can be formed in an arbitrary

Godelian set theory ©,. In A, axioms sub A, B, C, D, E and the Generalized
Continuwum Hypothesis hold.

Corrollary. If the axioms sub A, B, C are consistent, then they remain so after
axiom D, Gédel’s (strong) axiom of choice E and the Generalized Continuum
Hypothesis have been added.

(This includes the consistency of the axiom D with A, B, C (see [N]) due to
v. NEUMANN.)

Hereby, our preliminary considerations are completed. Let us return to the
main matter of the present paper.

%) With the ideal L, n Iz x of classes of theorems (of the model), see § 1.
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3. Index-models (T-models) and their first applications

Stating the concept of the model of a (formalized) set theory, we have
limited ourselves to both the interpreting theory 0, and the interpreted theory
0, as (Godelian set theories.

This limitation may hardly cause any essential loss of generality in forma-
lizable set theory.
The only essential (but very natural) limitation we assume lies in that,

forming the predicate b~1( .) (of “to be a set of the model” in question), we will
suppose there is (in the interpreting theory ©,) a class C so that

MX) = Xe,0 (in6,).

Under these assumptions, a certain ‘“‘normalization” of models is possible
i. e. a reduction of any model to a model of ceriain standard type to be called an
index-model. Let us briefly trace this reduction.

Suppose I:1, éls, ¢ are the predicate constants (of the interpreting theory ©,)

giving the interpretation of the primitive predicates M,, Cls,, €, of the inter-
preted theory @,. Suppose C is the class of all the “sets’” of the model, i. e.

ﬁ(X )= Xg¢C.
Let us distinguish any conception of the model in question by the sign ,~*
from the same conception of ), (or of 0,); we thus write

XeC=XeV=MX).
(V is the ‘;universal class” of the model in the model.)

By our supposition, every “set’” of the model is a set of the interpreting
theory. (We can always assume that every “class” of the model is always
a class of the interpreting theory.)'4) Moreover, by the satisfaction of B 1 in
the model, the predicate ¢ (of “to be an element” in the model) can be seen
as a relation in the interpreting theory, i. e. we can write ¢ ¢C' X C in 6,
provided ¢ has been limited to “sets” of the model.

Now, to each “class” X of the model (i. e. with éls(X)) denote by X* the
class of all the z ¢ ' with z ¢ X; especially V* = C.

Then we get (by Thm. M 1 and by the extensionality of &) a one-to-one
mapping, say M, of the class C on to a certain subclass C = M'C of the potency
class P(C), with M’z = «*. Clearly then ’

X _&_ Y = X*Cy*

14) For the notion “to be a class™ is essentially superfluous (comp. p. 333) since in [G],
every individuum to be considered is a class.
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(provided éls('X ), (Els(Y)); moreover, writing 7' = M-, we get T"C = O and
XeY =XeV*r=T'X*cY*
whenever X € C, (fls(Y ).
Therefore let us introduce the following new interpretation:
M, (Z) =ZC, Clsy(Z)= (ZCC).Cls(T-VZ),
XepY =MyX).Clsp(Y). (T'X eY) .
Clearly Cls;(Z)> Z C C, Mu(Z) = Z ¢, C, and we repeat with emphasis that

CCP(C),T"C = C.
It can be proved that if M, Cls, ¢ gtve a correct interpretation of M,, Cls,, €, (of
the theory 0, in the theory ©,) then the corresponding My, Cls,, e, do so as well.

Moreover, the given model and the already introduced model can be seen
to be equivalent in the sense of that the it corresponding factor-algebras are o-iso-
morphic. — Hence we can call the new model the 7T'-reductum of the given one.
(Note that “‘isomorphism between two models” (in the sense of a function)
can be defined only when all the ““classes” of the models are sets of the
interpreting theory; therefore ‘“‘equivalent’ means not “isomorphic”.)

We do not enter into the exact treatement of these statements here, since
they play, in the sequel, a heuristic role only in that they show the great
generality of models of a certain relatively simple kind; let us define this kind
of models explicitely:

Definition II. a) A model (X, £*) of a Godelian set theory @, in another
Godelian set theory ©,, given by the predicates M,, Cls,, ¢, as interpre-
ting the M,, Cls,, ¢, (of theory 6,) is said to be an index-model, or (more
precisely) a 7-model if the following conditions hold:

There is in O, a class ¢ and a one-to-one mapping (-class) 7' of Contoa
further class €' so that ' C P(C) and M,(X) = X ¢ c, Cls;(Y)> Y COC, X ep
e Y = T"'XecY).MpX).Clsy(Y).

The class C is called the class of indices, each T" xe C' is called the index of
the “‘set” x (of the 7T-model). .

b) A T-model is said to be complete, if Cls;(Y)=Y C C and C= P(C).

In the rest of this paper, we shall mainly be concerned with complete index-
models. For deeper questions, of course, incomplete index-models need to be
considered;!?) this is a further task.

15) E. g. Godel’s Ag, (of § 2 of this paper, in general) is an incomplete 7'-model with

the (partial) identity-mapping taken for the 7', with C = =1L (= the class of
constructive sets) and with Cls,(Y) = (X)(X e LD X .Y eL). (Y C L).
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Theorem III. Let @, be an arbitrary, O, an axiomatic Godelian set theory with
the axioms sub A, B, C alone.
Let T in O, be a one-to-one mapping of the potency-class P(C) on to the proper
class C' (i. e. Pr(C) is assumed).
Put
M, (X)=XeP((), Cls;(Y)=YCC,
Xepg Y =(T'XeY).(MpX)) . (Clsp(Y)) .

Then My, Cls,, e, give a correct interpretation of the primative predicates M,,
Cls,, €, of O,, 1. e. we get a complete T-(index) -model of O, in O, say Ap.
If the axiom of choice B is assumed in ©,, then it is satisfied tn the index-model
i question too.

Proof. I. The following almost trivial (metamathematical) remark may
be useful and often tacitly used:

Let @(x) be a propositional function of @, with the free set-variable ‘a’.
Then we have in @, the following equivalences (as theorems):

(@)(x e P(C) 0 D(x)) = ()[x e O > D(T"2)],
Hz@ e P(O) . D)) = ga((w e O) . B(T')) .
In words: A propositional function with quantifiers relativized to the class
P(C) can be replaced without loss of equivalence by the same propositional
function with quantifiers relativized to the class C' if each of the bound

variables { has been simultaneously replaced by the term 7" (in the scope
of the quantifier in question) — and vice versa.

IT. Proceeding in the verification of the axioms sub A, B, C in their ordering
in [G] we tacitly introduce notions and symbols of the model based on the
already verified axioms, by replacing M,, Cls,, €, by M, Cls;, €, respectively.
We distinguish these notions of the model by the subscript ‘;’ from the cor-
responding notions of @, (and of 6,).

III. The verification of the axioms. Axioms A 1, A 2 are tr1v1ally fulfilled
in 4,. The axiom A 3 or A’3 (of extensionality) is immediately verified
since T is a one-to-one mapping. The pair-set axiom A 4 for A4, is the follow-
ing theorem of 6;:

@@ 2T uez=(u=2Vu=y)
with the set variables limited to the class P(C).

Putting z = {T"21"y} we prove this theorem in view of A 4 in @, imme-
diately.

Hence we denote by

{ey}y = {T"2T"y} (2 eP(C),y «P(0))
the “pair-set’” of the model 4,.
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Especially, {xx}, = {2}, = {T"x}.
Further by
@yyp = {@bplaytply = {TH{T"2} T{T"2T"y}}
we denote the “ordered pair” of A, with the uniquely determined ordered
pair {zy) (of @,) (by theorem 1.13 of [G] based on the axioms sub A alone).

It is obvious that the equivalence X €, Y = X CY holds in @; whenever
the left side is meaningful, i. e. whenever X C C, Y C C. (Therefore we shall
omit the subscript ‘;” in any “inclusion” of the model.) More generally, if
in this sense a certain conception of the model 4,will be equivalent to the cor-
responding conception of @, (with unchanged free variables), then we say that
such a conception is tnvariant!®); denoting such conceptions (of the model) we
can — if no danger of ambiguity arises — omit the subscript ‘. — So e. g. the
concept of “being an element’ is not invariant, whereas the concept of “‘being a
subclass” is invariant; “being a set” and “being a class” are also invariant con-
cepts. The concepts based on inclusion (as e. g. the disjunctivity of two
classes and the property of being empty) obviously are invariant; therefore
9, = 0. But e. g. “ordinal numbers’” are not invariant (in general).

Let us return to the verification of axioms sub B.
B 1 (the axiom of the e-relation) in 4, changes into the theorem
HOr @) @y p e Cr = T'x e y]

with the limitations C, € C, x e P(C), y ¢ P(C) in 6,.

It is proved on setting

zeCp=geygyllxecP).(yecP(C) . (Txey). (z=T"<xy )],

where C,, exists by Theorem M 3 of [G]'

B 2 (the axiom of the class-meet) is obviously fulfilled in 4,; moreover
A.;B=A.B (whenever 4 C C, B C (, i. e. the class-meet is invariant).

B 3 (the axiom of complement) is immediately verified on setting —,4 =
= (' — A (provided A C C); the “complement’ is not invariant.

B 4 (the axiom of domain): By M 3 of [G] to every A with 4 € C we have
the class B with

veB = yyl(T'Wyx)ped).(yeP(O))].

This B is the “domain’ of A in our model 4,. — The “domain” D,(4) = B
is not invariant.

B 5 (the axiom of direct product): The class A € C being given, put
ceB=gaegyl'zed). (T'Yary=2) . (@eP(C)). (y <PO))]

18) “Invariant” transferred to Godel’s model 4 would be the same as Godel’s “abso-
lute’’; the inclusion is invariant in every index-model.
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(B exists by M 3 of [G]). Then B = C X, A is the “direct product” in 4, of
the “universal class” €' = V,, (of the model in the model) — with the “class”
A (in Ay). The “direct product’ is not invariant.

B 6, B 7, B8 (axioms of inversion) are verified in the same manner by
ze B =gaegyl(T"<ay>r =2) . (T"xyped],
ve B =nx oy qzl(T'<T"x T'<yzypyp =) . (T'<T"yT'zxypyp e A)],
veB =gy qzl(T"<T'x T"Wz>r>p = v) . (T°T"2 T {xy> >0 € A)]
respectively — always under the limitation z, y, z € P(C).
Axioms sub C: C1 (the axiom of infinity) changes into the theorem (in @)

qa{(a + 0) . (a e P(0)) . @)[(x e P(O)) . (T"x ea) > gy (y € P(O))(y e a)(x c y)}-

Prove it by induction over w, in @, (in the sense of 8.4 and 8.45 of [G]).

Put ¢y = 0, a,., = a, + {T"a,} for n € w,.

Clearly then a, ¢ P(C) and a,, € a, ,, for each n € w,.

Prove that a, c a, ., for each n € w,.

Otherwise a,, = @,,.,; for a minimal m e w,, while a,, a,, ..., a,, are mutually
different sets.

Hence by a,., = a,, + {T"a,} we get {T"a,}Ca, i. e. T'a,ca, — and
~ (T'tp_y € @p_y). (Note that m > 0 by a, = 0.) Therefore we have a,, =
= Gpyy + {1 Cpr} = @y 4 {T" A}

Since a,,_, * @, hence T"a,, , = T’a,, (T being a one-to-one mapping).

Now, by a,_ . {T"a,,_,} = 0 and by T"a,, € a,, we get T'a,, ea,,_, + 0 i. e.
m— 1% 0 — and 7a,, ea,,_, + {T"a,_,} with a,, , . {T"a,_,} = 0.

Repeating this argument, we get 7"a,, € ¢,,_y, T'a,, € @,,_5, etc.; after m such
steps we get the contradiction 7"a,, € @, = 0.

Therefore indeed a,, c a,,., for each n e w,.

Finally, put a = > a,.'%)

Me w,

Then ¢ + 0, a € C and by 5.1 of [G], @ is a set such that « ¢ P(C), hence a
“set”” of the model. :

If xeP(C), T'x e a then there exists a minimal m ¢ w, so that T’z ¢ a,,.
Hence 7"x = T"a,,_, (by the already proved result), i. e. x = a,,_;. Therefore
putting y = a,, we have T"yca, i. e. this y = a,, is the desired y with
TCY, Yepa.

Axiom C 1 is thus verified.

C 2 (the sum-axiom): To any x ¢ P(C) we have to find an y ¢ P(C) so that

(T'wev). Tvex)>Tuey.

17) “X” is the usual set-join (= set-sum).
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Indeed, replacing ,7"v € ¢ by the equivalent ,v e 7-'"2° we observe that
Y = S(T-1"z) is such an y.
Moreover, we can write Sy(z) = S(T-1"z) (x e P(0)).
Hence the forming of a “set-sum’ is not invariant.
C 3 (the potency-set axiom): To every x ¢ P(C') we have to find a y e P(C)
so that
uCaxd>T uey.
Indeed, y = 7"P(x) is such a y. Moreover, we can write P,(x) = 7T"P(x).
The “potency-set” is not invariant.
C 4 (the axiom of substitution): Let us define
Ungy(A) = (4 € C) . (w)(@)(w)[(u, v, w e P(C)) > [(T"(uv)>, e A) .
(T <wvyp e A) D (v = w)]] -
Then we have to prove the following theorem (in 0,):
(@)(A){Ungp(A4) o [qyO) (Tt e y = Hqs(T"s e 2)(T"As)p € A))]}
provided 4 C C, z,y, s, t e P(C).
To any 4 € C put
ze A* = gyt qys[(t e P(O)) . (s e P(C)) . (z = T"tT"'s) . (T"<tsype A)],
the class 4* being given in view of M 3 of [Gi].
Clearly 4* € C x C and Un(A4*) = Uny(A) (see the def. 1.3 of [G]). For an
arbitrary = we have by C4 the following theorem in @,:
Un(A*) D qy*(t*)[t* e y* = qs*(s* e x) . ({t*s*> e A*)] .
Assuming x e P(0), t* = T"t e C, s* = T's e C we then easily obtain
Un(d*) o qut)[T't ey = qps(T"s e x) . (<T'tT's) € A*)]
provided s, ¢, y e P(C).
Replacing here the propositional functions <(7"t7"s) e A* and Un(4*) by

equivalent propositional functions 7"<(tsy, ¢ A and Ung,(A) respectively, we
get the desired result.

Axiom of choice E: Suppose the axiom of choice E in @,. Let 4 be the uni-
versal choice-class of @,. Setting

zeAp = qu[(z = T'Cuvdy) . KT'uv) € A) . (u, v e P(0))]

(in view of M3) we observe that 4, C C,Un,(d,) and that 4, indeed is the
“universal choice-class” of the model A,. Hereby the proof of Theorem III
is completed.

Remark I. All the definitions and theorems of [G] are (mutatis mutandi)

valid in the complete 7-model 4,, except those which depend or the axiom
D or on certain of its consequences (not proved without using D — see § 2).
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Remarks II. Our tools of the verification of axioms in 4, fail in the case
of the axiom D.
The satisfaction of D in 4, is equivalent to the theorem

(DA EC). (A + 0)> gul(ueP(0O) . (T'wed). (w.4 + 0)]].
But in view of D in @, we only get
ANEAcCC). (4 F0)omqul(ueP(C). (T'ued). (T'u.A4 + 0)]].

Indeed, the axiom D as not requiring the existence of a class or of a set,
but rather excluding some classes and sets, cannot be satisfied in each 4, in
general, even if it is true in @,.

Moreover, we can prove the following

Theorem IV. In any Godelian set theory, a complete index-(T-)model Ay, can
be formed so that there exist in A, ‘‘predicative sets” (in the sense of Russell),
i e. ,qa(x ep, @) 18 @ theorem of the model Ay .

In other words: Seiting an arbitrary Godelian set theory O, as the interpreting
theory and the axiomatic Godelian set theory O, with the axioms sub A, B, C
completed by an additional axiom requiring the existence of predicative sets
(and moreover of the class of such sets) as the interpreted theory, we always have
a model of @, in O,.

If the axiom of choice E holds in O, then it can be assumed in O, as well since
it 18 then satisfied in A, too.

Corrollary. The axiom D — and the more so(by Theorem 1) the (generalized )
axtom of constructivity are independent of the remaining axioms, i. e. of the
axioms sub A, B, C and E. (This result is essentially due to Bernays, [B]).
Indeed, the existence of predicative sets is incompatible with the axiom D and
the more so with the generalized axiom of constructivity.

Proof of Theorem IV. Put C' =V (— the universal class of ©,). Then
clearly P(C) = C.

Define 7', as follows:

Top = {0}, Tof0} =0 and Toy=y if 0 +y =+ {0}.
Then Ty, C,P(C) have the properties required in Theorem III, whence we have
the complete index-model 4, in 6,.

But 7',{0} € {0} i. e. {0} €5, {0} holds by definition in @, i. e. in Aps q.e.d.

The remaining statements of Theorem IV obviously follow by the second
statement of Theorem III.

Remark I (on thes. c. Russell’s antinomy). It may be noteworthy to clarify
(in view of Thm. IV) why the existence of predicative sets cannot cause
any contradiction in Godelian set theory (without the axiom D, of course).
Moreover, no contradiction arises by the existence of the class of all the
predicative sets as well as by its complement, i. e. by the class of all “impredi-
cative” (normal) sets.
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Indeed, in A4, of Thm. IV, theset {0} is the unique “predicative set” (of the
model) and hence this set is identical with the ‘“‘class of all the predicative
sets” (this “class’” being ,moreover, a “‘set’”’), for {{0}}, = {To{0}} = {0}.

The forming of the contradiction is simply stopped by the fact that the
© “class of all the impredicative sets”, i. e. the “complement” — . {0} = V—{0}=
= — {0} of the “class of all the predicative sets’ is a “‘proper class’’ and hence
“apriori impredicative’’, though not a “set”.

Thus the s. c¢. Russell’s antinomy seems to be a purely logical failure: it
rests in requiring an individuum, say y, to a (nonvoid) binary relation R so
that yRx is to be true with an arbitrary « if (and only if) ~ (zRx) is true. But
such a y does not exist, no matter whether R is the relation of “to be an ele-
ment” or e. g. the relation of “to shave” (the “‘barber-antinomy’’) or any other
of this kind.

On the other hand, of course, all the s. c. diagonal arguments (like the famous
Cantor’s one) are indirectly based in this way, i. e. the corresponding ‘‘reductio
ad absurdum” always goes into a construction of a binary relation R with
the y in question.

Remark II. a) It is not difficult to give a complete index-model 4, such
that for a given n € w,, there is a “cyclical set™ x; so that

Xy €p Xy €p ... €0 Xy €7 Ty (in 44)
with suitable ‘“‘sets” z; of the model, z; + x; provided ¢ + j, 1 = =< n,
1<j=n
It suffices e. g. to put C =V = P(C),
0 ={{... {03 ... 3}, T{{...{{0}...10 =0
with » parentheses ,}* and ,{* respectively, and to complete the definition of
TbyT'z=aif 0 + 2+ {{... {{0}} ... }}. Then since 7"{{ ... {{0}} ... }} e {0}

we get
{0} er {03} er ({0} ep - e { - {0} ... B e {0}
(The parentheses are meant in the sense of 0, of course.)

b) Tt is also not difficult to give (in an arbitrary Godelian ©,) a complete
index-model and an infinite sequence of mutually different ‘“‘sets” (of the
model) z;, %,, ... so that

e Ep X EP X €Ep ... €Ep Xy €p Xy .

Indeed, provided C' = V as before, define 7' by the identities
T2} =1 1 = {2}, }
T8} =2 T2 = {3}, |

........................... (n € wy)

while 'z = zifx + jewy, x + {j + 1}.
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Then we get ... {j} e {] — 1} ep ... €5 {3} e {2} €, {1}.

¢) We cannot believe that with ¢' = 7 and with a nonidentical 7, the‘:axiom
D or the stronger axiom of constructivity (in the generalized sense, see § 2)
must be disprovable in 4,.'®) This need not be the case even if 7" has finite
cycles.

Indeed, put e. g. (provided C = V)
T'0 = {0}, T{0} = {{0}}, T"{{0}} =0; T'x ==z if =z & 0, {0}, {{0}}.

Then in the corresponding 4,, the (generalized) axiom of constructivity —
and (by Theorem I) even more so the axiom D is satisfied, assumed it is true
in the interpreting 6.

The proof (somewhat tedious in details, but easy in principle) will only be
outlined.

The relation e, can differ from e only in the case that the left hand member
is one of the sets 0, {0}, {{0}}. Especially, we have

Oep {{03}, O} er {0}, {0} er {{{0}3}-

Therefore, as it is not difficult to prove, the “ordinal numbers” of the model
A, are as follows:

0,=0, l,={{0}} =1, 2,={{0}0} = {0{0}} = 2

and further always 3, =3, 4, = 4, ... (i. e. the mapping Z of theorem V
below is the identical one from x = 2 upwards).

In view of the fact that 0, = 0 is “constructive’” in 4, as well as 1,, = {{0}}
and 2, = 2 = {0{0}}, we see that {0} = 1 = {0{0}} — {0} = {0{0}} — {0} is
“constructive’” in 4, too.

Hence all the ordinal numbers of @ are ‘‘constructive sets’” of A, which
suggests the rest of the proof.

Remark III. It will be obvious (in view of Theorem V below) that the
class L, of “constructive sets” of a complete 7-model is always included in
the class L of the constructive sets of the interpreting theory. It has been
shown by the previous examples it can happen that L = L,, though L, c L
is also possible. (See the 4, of Thm. IV, where {#} is not “constructive’ (in
Ay,) but constructive in the interpreting theory.)

Remark IV. Let us consider the notion of the “ordinal number” of an
arbitrary index-model explicitely.

By Definition I a:, b:, c: and by § 1, an “ordinal’”’ of a 7-model (see Defini-
tion IT) is any “class” X (with Cls,(X)) such that the following statements can
be proved in the interpreting O,:

18) This remark is due to M. KiNnDLER of my seminarium.
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ap: If we, X i e, 77y € X, then z C X (provided M,(x)).

by 1f x_ET X.yer Xie Tz e X, T'yeX, thenx =yorxe,y (i.e. T'xey)
Oryera (i.e. Ty e x) (provided M, (z), M,(y)).

¢p: To every @ with 2 C X there is a y so that y e, 2, 1. e. T'y e x — and
Z .y = ¢ (provided M,(z), M,(y)).

Note that in general the related “ordinals” of the corresponding secondary
T-model (see § 1) would be quite different; these latter would be def ned in
the same manner though under the verifications of the items ag:, bg:, ¢ as
based on purely logical consequences of the interpreted axioms A, B, C of ©,'?)
only, i. e. in the secondary interpreting theory ©*. The nature of these “secon-
dary-model ordinals” (also in the relatively simple case of complete 7-models)
depends on the concrete definition of the mapping 7'. The related theory seems
to be a difficult task, and is not attempted here.

Let us complete the definition of the “‘ordinal” of a 7-model by the following
conventions:

d;: An “ordinal” X of the T-model in question is said to be an “ordinal
number”’ (of this model) if M, (X) (i. e. if X ¢ 6’, i.e.if 7"X € O).

e,: Denote the “class” of all the “ordinal numbers” (of the 7-model in the
T-model) by On, and the class of all the “ordinal numbers’ of the model (in
the interpreting theory) by “On. — We observe, that they both exist (in
view of Thm. M 2 of [G]) in the interpreting theory &,, that On, moreover
exists in the 7'-model and that

T""On = Ony  (for 2 € "On = T'x ¢ Ony) .

The “‘ordinal numbers” (as elements of “On) can be “shown’ as follows:
Op =0, 1, ={0; ={T0}, 2;={0ply}, ={T"0 T{T"0}},
3p = {0,124}y = {T'OT{T'0} T{T"0 TT'O}}}, ..o op +0 1 =

= ap +piogty = ap + {T'ag}, ...

Of course, the already used symbol x,, has no meaning for a variable x and
the more so it cannot be understood as a mapping, or even an isomorphism
of the class On (of ordinal numbers of the interpreting theory) on to the class
TOn. (But compare theorem V below.) The sign «, has meaning only if « is
a concrete (constant) ordinal number defined in view of axioms (or theo-
rems) holding in both the interpreting and the interpreted theory; then «,
is to be seen as the corresponding concrete (constant) ‘“ordinal number” of
the 7-model, i. e. defined by the same definition as that of x is but replacing
M by ,M‘, Cls;‘ by ,Cls,* and ,e;* by e,

19) I. e. without using further theorems of ©, (not being interpretations of theorems
of ©;) provided 0, is based on the axioms sub A, B, C only.
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Nevertheless, in the case of a complete 7'-model, the “‘ordinal numbers” of
the model have the same structure as the ordinal numbers of the interpreting
theory; this is stated by the

Theorem V. Let © be a Gidelian set theory and let A, be the complete T-model
given wn O by the one-to-one mapping 1T of the proper class C = P(C) on to the
(proper) class C. (I. e. My(X) = X ¢ C' and Cls,(Y) = Y C ().

Then the mapping Z, defined inductively by Z'0 = 0, for a nonlimit f = «x
+1eO0n, Z'(x + 1) =Z'f + {T'Z'x}- and for a limit 1 eOn, Z'A = T"Z"2,
is an isomorphism of the class On on to the class "On (of “ordinal numbers” of
the 7-model A,) with respect to the well-ordering relations ¢ and <.

(See Definitions 4.52 and 4.65 as well as Theorems 7.42, 7.43 of [G] valid
in any 0.)

If T is constructive in O then Z is constructive in 6.

Proof. I. First prove the following two statements by induction (simul-
taneously:)

A. For every f e On we have Z'f « TOn.

B. If Bey, then T"Z'B e Z'y, Z'f + Z'y.

Clearly Z'0 = 0 e "On and if Z'x e "On, then Z'(x + 1) e “On (by the de-
finition of “ordinal number” of 4,). Note, that by the argument used in the
verification of the axiom Cl in 4, (Thm. IV), we get ~ (I"Z'x ¢ Z'x). In
view of this argument?) it obviously remains to prove the following
statements only:

Suppose Z'x € TOn for each « ¢ A where 1 is a limit ordinal number and
let Z map A on to Z"2 isomorphically with respect to e and e;,. Then Z'A ¢

e "On.

Let us prove this statement, i. e. let us verify the requlrements apt, by, cpt
of the preceding Remark IV.

First, clearly Z’A c C by the inductive assumption, i. e. Cls;(Z'4).

Suppose x e P(C), y e P(C) and x e Z'A, i. . T'x e Z'A=T"Z",i. e. xe Z "],
i. e. x = Z'« with a suitable « € 1.

Then in view of the inductive assumption, y ez (i. e. T"T~"y ¢ x) means
Ty =2y i. e. y = T'Z'y with a uniquely determined y e x and y c A.
Z'yeZ"y implies y = 1T"Z'y e T"Z"y c T"Z"2 so that indeed z c Z'A. The

requirement a;: is thus verified.

Suppose x e, Z'Ai.e. T'xe Z'Aand yep T'Ai. e. T'y e Z'A.

Then x € Z'A, y e Z'Ai. e. x = Z'x, y = Z'f for suitable « € 4, f € A (by the
inductive assumption).

20) Not to be repeated here.

352



If « = f then obviously x = y and if o € § then 7"z e y i. e. x €, y by the in-
ductive assumption. The requirement b,: is thus verified.

Suppose x € P(C) and @ + « C Z’A. In order to verify ¢,:, we have to find an
v e P(C) so that 7"y ex and y . & = 0.

To this purpose (in view of the inductive assumption) we take, for every
set of the form x . Z'x (x € 1), a y,, so that

(i) Ty, ex . Z'x,
(i) 9y .2 . Z'x = 0,
(iii) y, = Z'«* with a uniquely determined smallest possible a* € 4.

If xepfel, then Z'xc Z'f and x . Z'x C « . Z'f by inductive assumption.

Hence we get p* e a* v o™ = p* whenever « ¢ f3, i. e. the function B, given
by B'x = «o* [with (i), (i), (iii)] on 4, is a non-increasing function.

Therefore B'x = (x)* for every e A with x ¢ e A, where x is a suitable
constant ordinal number.
Thus y = ¥z« is the desired y.

Indeed, 7"y e x is clear and y .« = 0 is not difficult to prove as follows:
Pat 2 = > x.Z'f (since Z'2 = z Z'f as it is easy to see by the already

Sefer pen
verified item a;:). Then z e y . x would imply z ey, .x . Z'p for every § with

aeflel

Hence z2=1T'Z"y e y;=Z'(x)* for a suitable y e (x)* (by the inductive
assumption) — in contradiction to the definition of (x)*.

Thus requirement c,: is verified too.

Therefore Z'A is an “‘ordinal’’ of 4,. But moreover, since

Z'dep Z'A +p lp=Z'2 + {1"Z'2}
is an “ordinal” of 4, as well, hence Z'4 is an “‘ordinal number” of 4,, i. e.
Z'% e TOn.

Therefore both the statements A. and B. are proved.

I1. Second, prove Z"On = TOn, i. e. prove that T"Z"On = T""On = On,.
Indeed, T"Z"On is an “ordinal” of A, as it is immediately seen by the al-
ready used arguments. (Take 7"Z"On instead of Z'A = T"Z"}). But T"Z"On
is a proper class (of ®) and the more so a “proper class” of 4,. Hence 7"Z"On
must be the “class of all the ordinal numbers” of 4, in 4, — by Theorem 7.2
of [(F] valid in © by § 2.

Since the additional statement (on the constructivity of Z if 7' is construc-
tive) is almost obvious, hence Theorem V is proved.

Remark I. If we were not interested in the explicit formula of the isomor-
phism Z (of On on to TOn), then we could prove in & and then apply Theo-
rem 7.7.1 of [G] (in showing that “On is a proper class well ordered by e, and
such that the class of all the & €« “On preceding a given y ¢ 7On is a set).
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Remark II. The argument of the proof of Theorem V obviously fails if
the 7-model in question is not complete, since 7"Z"”2 with a limit A need not
be a ““set” (or a “class’) of the model.

We conclude with the

Theorem VI. The existence of predicative sets (being an element of itself) us
consistent with the axioms sub A, B, C and E of [G] completed by the Generalized
Continuuwm Hypothesis. Azxiom 1) (and the more so the generalized axiom of
constructivity) is independent of the axioms sub A, B, C, E completed by the
Generalized Continuum Hypothests.

Proof. Suppose a complete 7-model A, in any Godelian set theory. Then
P,(x) = T"P(x) by Theorem III — provided = ¢ P(C) (see Def. II). Therefore
in view of Theorems III (the last statement) and V we observe the following
relation between the “power’” (‘‘cardinal number’’) of a ““potency-set’” in 4,
and the power of the potency-set of the same set x ¢ P(C) (see Definition 8.20
of [G]):

(Py(2)y = Z'P() .
Now, Theorem VI is an immediate consequence of Theorem IV and of the
fundamental result of [G].

Remark. All our considerations could be performed mutatis mutandi in
another sufficiently powerful formalized set theory, e. g. in the system of
Mostowski (see [K-M]). In this system, moreover, some arguments would be
simpler, but the results perhaps somewhat weaker in a certain sense.

LITERATURE

[G]- K. Gédel: The Consistency of the Axiom of Choice and of the Generalized Conti-
nuum Hypothesis with the Axioms of Set Theory, Annals of Mathematical
Studies, Princeton 1940, Third Printing 1953.

[T] A. Tarski: Grundzige des Systemenkalkiils I. Fund. Math. XXV (1935), 503 bis
526; 11. ibid. XXVTI (1936), 283—301.

[M I] A. Mostowski: Abzidhlbare Boolsche Korper und ihre Anwendung in der Meta-
matematik, Fund. Math. XX7TX (1937), 34—53.

[M II] 4. Mostowski: An undecidable Arithmetical Statement, Fund. Math. XXXV

’ (1949), 143 —164.

[R I] L. Rieger: On the algebra of the lower predicate calculus, Czech: O algebi‘e niz-
stho predikdtového poctu, mimeographed lectures, Matematicky ustav, Praha
1951.

[R II] L. Rieger: On countable generalized o-algebras, with a new proof of Godel’s
completeness theorem, Czech. Math. J., Vol. 1 (76) (1951), 29—40.

[R III] L. Rieger: On Free wg-complete Boolean Algebras, Fund. Math. XXXVIIT
(1951), 35—52. ’ g

354



{H-B] D. Hilbert-P. Bernays: Grundlagen der Mathematik II, Springer, Berlin 1939.

{B] P. Bernays: A system of axiomatic set-theory VI., Journ. of Symb. Log. 13
(1948), 67—179.

{K-M] K. Kuratowski-A. Mostowski: Teoria mnogosci, Warszawa 1952.

[N] J. v. Neumann: Uber eine Widerspruchsfreiheitsfrage in der axiomatischen
Mengenlehre, J. f. reine und angew. Math. 7160 (1931), 227 —241.

K] K. Kuratowski: Ann. Soc. Pol. de Math. 3 (1924), 146. (After [K-M], p. 233.)

[W-N] Hao Wang-R. Mc Naughton: Les systémes axiomatiques de la théorie des en-
sembles, Paris, Gauthier Villars, 1953. :

Pesiome
K I'EJEJIEBCKOII ARCUOMATUYECKOI TEOPUU MHOKECTB, I

JIAJIUCJIAB PUTEP (Ladislav Rieger), IIpara.
(ITocrynumo B pegariuio 18/V 1956 r.)

Hacrosmas paGora recHo upmmbikaer K ocHoBHOH pabore [lepgens [G].
Berynurensusii naparpad 1 cogep:ur HeoOX OAUMBIE B IIOCIECTBIN METAMATE-
MaTnyecKnde ITOHATHAA, B YACTHOCTH, HOHATHEe (OPMATIM3MPOBAHHOW TEOPHI
U noHATHE (GOPMATM3UPOBAHHON urmepnpemayuu (I modesn, JaHHOR DTOIL
WHTepIpeTanuei) ofuoii GopMaIn3mpoBaHHOI TEOPHH B APYroil opmanmsm-
POBaHHOI TEOPUH — HE3aBUCUMO OT TOTO, HJET JIN Pedb O TEOPHAX, JOMYCKAIO-
IWUX AKCHOMATH3AINIo, MM HeT. JTH IOHATHA (M OCHOBHBIE COOTHOIIEHMS
MEKLY HuMH) cOPMYJUPOBAHBL as2ebpaudecku, T. €. NPH TOMONIM T. HA3.
€60600HvIT 0000WenNbIL o-ar2ebp W ux udearos. B wacrHocTn, momstHe HH-
Teplperaniil OKa3hiBAETCS M3BECTHOTO POJA o-IOMOMOPQHBIM OTOOpaskeHHeM
OfHOH 0000meHHOIl ¢BOOORHON o-anredpsl (npmHajemamel K T. Ha3. HH-
TepIPeTupyeMoil Teopuu) B Apyryio 06o0HieHHy0 cBoGoanyIo anredpy (mpiu-
HAJJIeKAILYI0 K T. HAa3. UHTEPIPETHPYIOLICl Teopun).

B § 2 (roropsiil TakKe HOCHUT elle MOATOTOBUTEIBHBII XapaKkTep) IIPeKe
Bcero mocrpoena (3a cuer HEOONBINNX BUJOM3MEHEHHIl, MMOXOOHO TOMY, Kak
n B [(]) HeoOxopmMass HAM dYacTh IIPOM3BOJILHON, T. e, o0meil eederesckoll
($OpMaTIMBMPOBAHHOA TEOPNI MHOMKeCTB (BKJII0Yas NOPAIKOBHIC YMCJIA); Tefe-
JIeBCKOII MBI HA3KIBAEM BCAKYIO (JOPMAIMBMPOBAHHYIO HICMEHTAPHYIO TCOPHIO
MHOKECTB ¢ TeMH K€ TPeMsi IPUMUTHBHBIMI NOHATHAMM, Kak 1 B [('], B Koropoii
cupaBefiiuBel xors Obr akcmomer A, BB, C Kark Teopemsl, IpudyeM, OIHAKO,
axcmoma D BooOIe roBops He 00s3aTebUO CIPaBe[JIMBA, I CaMa TEOPHH He
TOJZKHA JIONYCKATh aKCHOMATH3AIMIO.

Hamee (mesaBmcumo or axcmomsl D, B ommume or [G]) dopmysmmpyercs
(06001IeHHEIT) 3aKOH KOHCTPYKTUBHOCTH U 0000MMaeTcsi HOCTPOEHHE TeflesieB-
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cKoi Mojlenin A ROHCTPYKTHBHBIX MHOJKECTB M KiraccoB (teopema 1) Tar, aro0br
€ro MOJKHO OBIJIO HPOBECTH B 11POU3BOJILHON TejlesieBCKoI (opMaIn3npoBaHHOIL
TEOPNH MHOMKECTB.

B § 3 (coctaBisiomem rIaBuyio 4acth 9Toil paboThl) Hpejpie Beero BBOANTCA
nouArhe (B N3BECTHOM CMBICIIC YHMBEPCAIBHON) T. HA3. undekc-Mmo0eal COTTacHo
caeyonemMy

onpepenenmnio II. Monens (refteseBckoil Teopnn MHOKECTB @, B TeIeTeBCKON
TEOPUU MHOKECTB 6)) Ha3BIBAETCS MHIEKC-MOJIEINBIO, €CJIN T. Ha3. IPUMHUTHBHBIC
nonatua mofesneil M, (yuaBmbil npejpukat ,,MHO;kecTBo‘), Cls, (yHapHHIil
TpejimKaT ,,Knacc‘) u e, (GUHApPHBIN TNpeauKaT ,,0BITH DJIeMEHTOMC B CMBICJIe
MOJlesi) JaHBl TaK:

B 6, cymecrByer knace C' M B3AUMHO OHOZHAUHOC otobpaskenue (T. e. KIAcC
ynopsigoueHusX nap) 7' kiacca ' na apyroi kmace C rag, 9to

1. E’ ecth uacth kaacca P(C) Beex nopmuoskecTs Kimacca C,

2. NPUMATUBHBIC HOHATHA MOJAEIM BHIIOTHAIOT CIICYIONINE YCIOBUA

My(X)=XeC, Cls,(Y)oYCC,
XepY =(1"XeY). My(X) . Clsy(Y) .
HKanace C naswiBaercst kaaccom undercos, muomecrso 1'X e C (o6pa3 MHOKecTBA
X npwu orobpaskenun 7°) ecTh T. Ha3. MHAEKC ,,MHOMecTBA Mojemn' X.
Wnpexc-monenp Ha3bIBAETCA NOAHOM, €CIIA MMEET MECTO

Cls,(Y)=Y C(C, C=P(C).

b

IIpuBenem riaBHBle Pe3yibTaThl § 3, B KOTOPOM MBI OTPaHHYMBAEMCH TOJTHBIMM
MHJIEKC-MOIEITSIMH:
Teopema III. /Tycmv ©; — npoussoavnas u nycmv @y — AKCUOMAMUYECKAS
meopus muomcecms, sadannas npu nomowu axcuom A, B, C.
Hyems T — 63aumno 00no3naunoe omobpancenue kaacca P.(C) 6cex noOMHO-
HCeCNE HEKOMOPo2o (fukcuposanno2o cobemsennozo kaacca C ¢ @, — na camoe C.
Toromncum
M, (X)= X eP((),
Clsp(Y)=Y cC,
Xep Y =(T'XeY). Mp(X) . Clsy(Y) .
Toze0a My, Cls,, ep 06pasyiom modeav meopuu @y 6 meopuu @y, m. e. MOIHY IO
MHAEKC-MOAETD.

Ecau ace u cedenescrasn arcuoma svibopa E umeem mecmo 6 @y, mo E evinos-
HACMCS U 6 3Ol MODCAH.

Teopema IV. B kaocdoii eedenescroii meopuu mruoymcecms 6; moxucro no-
Cmpoumsv NOARYI UHOCKC-MOOeAb AKCUOMAMUNECKOU 2e0eae6CKOl Meopul MHO-
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acecms @y c-arcuomamu- A, B, C mak, wmo ¢ amoit modeau cywecmsyiom m. nas3.
L npedukamusnuie Muoncecmea'* (¢ camvicae Pecceas), m. e. mmoycecmsa, codep-
wcawgue camu cebs ¢ kawecmee avemenma. (/[pyeumu caoeamu, umeem Mecmo
q2(x €5 T).)

Ecnu B @, cnpasejuinsa refiesieBckas akcnoma Boibopa E, To E Boinonasercs
IT B yKaszawHoIl Mojenn. B aToil MoIHON WHIEKC-MOENu cyMecTBYeT HelycToi
KJIace (M Jlaske MHOMKeCTBO) TPeINMKATHBHLEIX (HEHOPMAJbHEIX) MHOJKECTB, TaK
jKe KaK M KJacc HOPMAJbHBIX (uMIpernKaTuBHBIX) MHO:KecTB. (Hecmorps Ha
HTO MBI He TIOJTYUNM M3BECTHOTO T. Ha3. mapajioxkca Peccess.)

Teopema V yrBep:kjaer, 9To kadacc nopadkoesis wucen TMPOUBBOJILIO 3aaHHOI
rejlefIeBCKOM TeOPUH MHOMKECTB WM KAAcC ,,NOPA0KOGuE wuces'’ TPOUIBOJIBLHOIN
nOAROI WHAEKC-MOJENN, onpejesieHnoi B 910l Teopun, uzomopguse. Ha ocmo-
Bauuy § 2 (o0odmenne ocHOBHOIO pe3yiibTaTta ['efeirs) orciofa JIerKo BuiTeKaer
cymecrpennoe ycusienne reopemsr IV, a umenno

Teopema VI. Cywecmeosanue npedukamusnoir moncecms (Cofepanpax ca-
MuX ce0si B KadecTBe HIIeMEeHTA) M HEMYCTOTO MX KIlacta COGMECINUMO ¢ AKCHO-
vmamu Legienia A, B, C u E, donoanennvimu 0606werninoii eunomesoti kKonmunyyma
— ecym ToabpKo akecuomel A, B, C camu coBmectumsl. B3 gacruocrtu, akcmoma
®. Heiimanna D, a rem Gosiee u Gojiee cHibHAA AKCHOMa KOHCTPYKTHBHOCTH
I'emenss — asmsercsa nesasmenmoii or regeneBckux axkcnom A, B, C, E, gomomn-
HeHHBIX 0000IeHHOI IHHOTe30H KOHTHHYYMA. ’

3 nmoproromsisieMoil BTOpoil uwacTH aBTOp IpeRIoNaraer 3aHATbed 0OoJiee
TIIyOOKNMM BOHPOCAMU HENOLHOLE WHEKC-MOJeIeil.
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