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Чехословацкий математический журнал, т . 10 (86) 1960, Прага 

STOCHASTIC APPROXIMATION METHODS 

VACLAV FABIAN, Praha 

(Received March 25, 1959) 

Some modifications of known approximation procedures are con
sidered and general theorems are proved, which make possible the 
study of their convergence. 

1. Introduction. Stochastic approximation methods deal with the problem 
«of approximating a point of the q-dimensional Euclidian space Eq at which 
a function / acquires its minimum (or maximum or at which the value of / 
is equal to a predetermined number). Such problems are of great importance, 
especially in connection with practical problems of finding optimum conditions 
for concrete chemical and physical processes, where we usually can for every 
point x in Eq (which represents some fixed conditions of the process considered) 
determine or at least estimate the number f(x) (which describes the ,,quality" 
of the process with conditions characterised by x). Often the only further 
knowledge tha t we have about /, is tha t / has some very general properties 
(has a bounded second derivative etc.). The approximation process starts with 
a point (or random vector) X± in Eq and constructs successively a sequence 
of random vectors Xl9 X2, The first n members Хъ Х2, . . . , Xn being ob
served, the sequence proceeds in such a direction Yn tha t it can be expected 
tha t / decreases on the segment [Xn, Xn + aYn] at least for small a. Then the 
length ocn of the n-t\i step is chosen and Xn+1 is defined to be Xn + ocnYn. 

Methods for attaining optimum conditions were proposed even before the 
origin of stochastic approximation methods, but only intermediate steps were 
studied in the search for a minimum (factorial and other designs, the method 
of G. E. P . Box and К . В. W I L S O N ([4], 1951)). 

Although till now the majority of papers are concerned with the one-di
mensional case, it seems tha t the multidimensional case is of an incomparably 
greater importance from the practical point of view. Indeed, in the one-di
mensional case (and much less in the two-dimensional) a graphic description 
of data makes possible subjective considerations, which may in some cases 
be more efficient than a general objective scheme. However, in the three-
and more-dimensional case, the possibility of a graphic representation breaks 
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down and the systematic approach is also inconvenient, since the number 
of points of a reasonably dense net in the domain of / increases geometri
cally with the dimension. If we t ry to represent the function considered by 
a polynomial, then, if we have to find an extremal point, the degree of the 
polynomial must be greater than one and usually the representation does not 
lead to a practical reduction of the problem. On the other hand, if stochastic 
approximations are used, then, under certain conditions and in a sense to« 
be specified later in section 9, an increase in the number of dimensions from 

q — Itoq increases the number of observations by a factor of (see (9.2)). 

Hence, and from practical experience, it seems tha t the use of multidimensional 
stochastic approximation can lead to a substantial increase in the efficiency of 
experimental work e. g. in chemistry, engineering, zoology, medicine and so 
on. Moreover it seems tha t some results in multidimensional stochastic appro
ximation are new also in the particular case when the values of the function 
considered can be determined precisely without any random error in which 
case it deals with a problem in numerical analysis rather than in probability. 
In this sense, the stochastic approximation methods are related to more 
special methods (so called methods of the steepest descent, see e. g. [12]) and 
seem to be more fit than they for use in constructing an automatic optimizer 
(see [10]). 

To fix the ideas let 

( 1 . 1 ) -Л-n+l = Xn ~Г &n* n > 

where Xn, Yn are ^-dimensional random vectors, ocn are random variables, 
let us write 9£n — [Xl9 . . . , Xn] and let us denote by Mn(&n) the conditional 
expectation E^- Yn of Yn given 9£n. 

The pioneering paper of H. ROBBJNS and S. MONRO ([15], 1951) deals 
with the (one-dimensional, i. e. q = 1) problem of finding a root of an equation 
В(x) = 0. Under somewhat stronger conditions than are those of the following 
theorem, Robbins and Monro proved the convergence of Xn to the solution 0 
in probability; under the conditions of the following theorem, the convergence 
with probability one was proved by J . R. BLUM [1] in 1954. 

(1.2) Theorem. (Robbins-Monro method.) Suppose that В is a function, 
defined on Ex — (—- oo, -f- oo), that 

(1.2.1) sup B(x) < 0 , inf B(x) > 0 
-k<x-©<-- -<х-в<к 

к к 
for a {unknown) number 0 and every natural number h and that there exist 
constants А, В such that 
(1.2.2) \B(x -0)\<A\x- 0\ + В 
for all x. 
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Now if an is a sequence of positive numbers such that 
00 00 

•(1.2.3) 2an = + co, 2 a « < + °°> 
n= 1 n = 1 

if in (1.1) <xn = an, if 

(1.2.4) Ми(^и) = - ВД.) 

and if 

(1.2.5) E (F„ - Mn(3Tn))z S. cr2 

for a suitable G and for every natural number n, then the sequence Xn converges 
to the point О with probability one. 

We observe tha t (1.2.4) states tha t Yn is an unbiased estimate of — R(Xn) 
and tha t the sequence of (conditional) variances of Yn is bounded. The intuitive 
reason for defining Xn+, to be Xn -f- anYn is tha t E^ anYn = — anR(Xn) 
is by (1.2.1) positive and negative for Xn < в and for Xn > 0 respectively. 

In 1952 J . K I E F E R and J . WOLFOWITZ [14] solved in a analogous way the 
problem of finding a maximum of a function R defined on E± and proved t ha t 
under suitable conditions their scheme converges in probability. Again J . R. 
BLUM [1] has weakened the conditions and proved the convergence with 
probability one; this result is recapitulated in the following 

(1.3) Theorem. (Kiefer-Wolfowitz method.) Suppose that R is a function 
•defined on El9 that 

(1.3.1) inf DR(x) > 0 , sup DR(x) < 0 
-k<x-0<~- ~<x~-©<k 

к к 
for a (unknown) number в and every natural number k, where Df(x) and Df(x) 
denote the lower and upper derivative respectively of the function f at the point x. 
Suppose that there exist constants А, В such that 

(1.3.2) \R(x + 1) - R(x)\ < A \x - &\ + В 

for all x. 

Let an, cn be two sequences of positive numbers, 

2 sr^ a* 
a„= + со, 2 , # < + 0 0 ' 

let ocn = an, 

(1.3.4) M„(<r„) = ^ - [B(Xn + c„) - E(Xn - c j ] , 
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and 

(1.3.5) Е ^ ( Г „ - М И ( ^ П ) ) ^ _ i) 

for a suitable a and for every natural number n. 

Then Жп converges to 0 whit probability one. 

In 1954 Blum [2] generalized the one-dimensional results of Bobbins , 
Monro and Kiefer, Wolfowitz to their multidimensional analogues. However 
it seems to us tha t the conditions öf the multidimensional Blum's analogue 
to the Robbins-Motiro method are too strong and tha t the second Blum's 
method desribed in the following theorem is of a considerably greater impor
tance. Before stating the theorem we introduce the following notations. 

For a vector x we denote by x^ the г-th component of x, for a matrix M 
we denote by M(ij) the element of the г'-th row and j-th column; further we 

denote11#11 = I/ 2 [^(i)]2
? ||-^|| = sup ||Ж#||. By A{ we denote the vector satisfy-

ing A{f = 0 for j Ф i and A{f} — 1. If / is a function on EQ, then by the symbols 
Df(x) and D2f(x) we mean the vector and matrix such tha t В^^(х) = [Df(x)](i) = 

= W>m and -°№) = P2/(*)F> = i ^ o r /(*)• 

(1.4) Theorem. (Blum's method.2) Suppose that В is a function defined on 
X = Eq, that DR(x) and D2B(x) exist for all x e X, thai 

(1.4.1) B(0) = 0,inf {B(x); \\x ~ 9\\ > s}> 0, inf {\\DB(x)\\; \\x - 0\\ > 
> e}> 03) 

for a 0 e X and every e > 0 and that 

(1.4.2) \\D2R(y)\\ £ Ш 

for a suitable constant K. 

If an> cn are positive numbers such that 

(1.4.3) cn->09^an = + oo, ^ancn < + GO , ^^ f " < + °° > 

• Y + Y -
г) Usually Yn is supposed to be — -̂•= — , where Fw+ and Yn~ are estimates of Ä ( X M -f-

+ cn) and R{Xn —cn) respectively, 
EvJYn+ - ЩХп + о,))« =S <T2 , % п ( Г „ - - Й(Х„ - cn)Y g <т* . 

2) We change inessentially the original theorem by considering the function R —— "My 
where M is the function considered by Blum [2]. ' [ ) - ' ."• ' 

3) Hence R has its unique minimum at (9. 
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if in (1.1) ocn = an, 

( 1.4.4) M g W = - i (Д(ХЯ + с J(*>) - J8(Zn)) , 

(1.4.5) E-r.Cr, - Mn(<r„))2 5g J , 
n 

then Xn converges to 0 with probabitity one. 
The reader should note the analogy between (1.2.1), (1.3.1) and (1.4.1). 

On the other hand (1.4.2) is much stronger than (1.2.2) and (1.3.2). However 
in the one-dimensional case there are only two possible directions for the move 
from Xn to Xn+1; in the multidimensional case there are uncountably many 
directions and only q directions are examined by Yn; this is the reason for 
stronger conditions on DR(x). 

From further studies on the convergence we mention the paper by A. 
DVORETZKY ([9], 1956), in which the problem of stochastic approximation 
was attacked with considerable generality, making it possible especially t o 
obtain in a unified way all the previous results concerning convergence pro
perties — both in mean square and with probability one — in the one-dimen
sional case. 

In 1958 H. K E S T E N [13] proposed a modification of the Robbins-Monro 
procedure substituting the definition ocn = an by the definition <xx = au 

a2 = a2, an = am+2, where m denotes the number of changes of sign in the 
n - 2 

sequence Yl9 Y2, . . . , Yn+1, ,i. e. m = | ^ |sign Yi+1 — sign Yt\. The intuitive 

reason for the modification is tha t small m indicates tha t \Xn — 0\ is large 
and tha t it is unreasonable to diminish ocn. Under the additional assumption 
tha t an is a nonincreasing sequence and under some additional weak assumptions 
on Yn, Kesten proved the convergence with probability one to 0 of the modi
fied Robbins-Monro procedure. He studied also the Kief er-Wolfowitz procedure 
but was unable to prove tha t its analogous modification preserves its con
vergence to 0. He proved this convergence only after some further changes in 
assumptions especially after replacing the condition cn -> 0 by en — const.; 
however, in this case Xn does not in general converge to the point (if it exists) 
a t which В acquires its maximum. 

In 1958 VACLAV DUPAC [8] devised an essentially new method for solving 
simultaneous equations В$(х) = 0 (i =• 1, . . . , q) under the assumption tha t ü^ 
are linear functions. 

In addition to the construction of new approximation methods and the 
proof of their convergence, the speed of this convergence, at least asymptoti
cally, was studied in a number of papers among which the first was t h a t by 
K. L. CHUNG [11]. The method of Chung, who deals with the process of 
Robbins-Monro only, was applied to the study of the Kiefer-Wolfowitz pro-
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procedure independently by C. DERMAN ([5], 1956) and Vaclav Dupac [7], 
1957) with partially overlapping results. Vaclav Dupac studied also—using 
Chung's method — the asymptotic speed of convergence of his above-mentioned 
multidimensional stochastic procedure ([8], 1958). A very general and fruitful 
study in this direction concerning both one- and multidimensional cases was 
published in 1958 by J E R O M E SACKS [16], who used succesfully another 
method of proof than Chung. All results of this kind are of great importance 
ior their consequences for the choice of eligible constants in the schemes 
studied. The best choice (unique minimax in the non-asymptotic sense) 
of eligible constants in a special case of Robbins-Monro procedure was found 
by Dvoretzky in the already cited paper [9]. 

In the present paper we propose two modifications of the known procedures 
<and study their convergence with probability one. In order not to interfer 
with the convergence property, the modifications which lead to a weakening 
of the conditions concerning the function В require stronger conditions for 
the estimates of the values of E. However these strengthened conditions are 
still rather general since they are satisfied if, roughly speeking, all errors of 
t he estimates of the values of E used in the approximation process are conti
nuous and equally distributed (see Theorems (4.3), (4.4), (8.4), (8.5), sections 
(6.2) and (7.2)). 

The recurrence relation (1.1) for the Robbins-Monro procedure can be 
rewritten in the form 

Xn+1 = Xn + an \Yn\ sign Yn , 

where Yn is an estimate of — E(Xn). Hence we see tha t the direction of the 
n-th move of the approximation process is choosen to be sign Yn and the 
length of the move is chosen to be an \Yn\. This choice will be reasonable if 
large values of \Yn\ can be expected for large \Xn — 0 j , but this is not guaran
teed by the assumptions of the Robbins-Monro method. Thus if e. g. E(X) = 
= Xt~x% then assumptions (1.2.1) and (1.2.2) are satisfied for 0 = 0, the 
Robbins-Monro procedure still converges to 0, but it behaves unsatisfactory 
from the practical point of view. Indeed it makes small corrections for \Xn — 
— &\ large and large corrections if \Xn — 0\ is small. If we determine the 
length of the n-th move to be an instead of an \Yn\, we get a procedure much less 
charged by this inconveniency (and free of it if there is no error in observations). 
Moreover the above-mentioned weakening of conditions imposed on E consists 
in omitting (1.2.2). That (1.2.2) cannot be omitted without the modification 
of the procedure, follows from the following example (see Dvoretzky [8]): Let 

E(x) = \x\ x, Yn = E(Xn) (i. e. there is no error in observation), an — —, 
n 

X0 = 3; then X2 = 3 — 32 = — 6, X3 = — 6 + f = 12, . . . and it is easily 
verified tha t \Xn\ -> ' + oo if the original approximation scheme is used. 
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On the other hand for the above described modification we have X0 = 3, 
Хг = 3 - 1 = 2, X2 = 2 - i = f, X3 = | - i = £, . . . and Xn -> 0. 

The situation in the case of the Kiefer-Wolfowitz method is analogous. 

Here the length of the n-tb. step is — \Yn\ which again seems not to be reason-

able unless a further assumption (here tha t of concavity) concerning R is 
satisfied. In the general case we propose to modify the procedure by taking 
ft /У 

-^~ for —— \YJ, so tha t (1.1) changes to 
2cn 2cn ' я " 6 

Xn+i = Xn + ~ sign Yn . 

In the multidimensional case we study the modification consisting in replacing 
Y$ by sign Y^ (i = 1, . . . , q). As the proposed modification of the determin
ation of the length of the n-th step of the process makes possible the omission 
of the condition (1.2.2) in the case of the Robbins-Monro method, it enables us 
to omit the condition (1.3.2) in the case of the Kief er-Wolfowitz method and 
to weaken the condition (1.4.2) in the multidimensional case of Blum (only 
however, if conditions on Yn are strengthened). 

The second modification is motivated by the fact tha t in the search for 
a minimum of a function by the method of Blum we need at least q + 1 
observations for determining the direction at each step. Since we never know 
the optimum length of the move, it seems to be unreasonable, especially if q 
is large, to examine only one length. We propose to determine the length 
an in the following way: If Xn and Yn are observed, take observations Vj (in
dependent of Xn, Yn) of E(Xn -f jaYn) for j = 1 ,2 , . . . until V1 > V2 > . . . > 
> F,_! and put ocn = ja if Vx > V2 > . . . > V^x > Vs ^ Vj+1. 

Thirdly we study the behaviour of the sequence Xn if the assumption 
(1.4.1) is not required. I t can be shown in this case tha t f(Xn) is a convergent 
sequence which behaves as if the sequence Xn converges to a zero-point of the 
derivative of / (see Note (5.3)). I t is paradoxal tha t we have not succeeded 
in proving tha t this must be a local minimum, but it seems tha t this is a weak
ness of our methods of proofs rather than a deficiency of the approximation 
methods. 

Concerning the ordering of the paper, section 2 introduces some notations 
and assumptions, sections 3 and 4 deal with the modification of ocn mentioned 
above. The reader interested only in the case, in which ocn are numbers, can 
omit these sections except Theorem (4.1). Section 5 contains basic convergence 
theorems; in Note (5.3) the interpretation of results is discussed. Section 6, 
7 and 8 contains proofs of Theorems (1.1), (1.2) and (1.3) — and their genera
lisations — respectively. Some concluding remarks are made in section 9. 
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2. Some notations and basic assumptions. Let q be an integer and X = Eq 

the g-dimensional Euclidean space. If x, y are in X, we denote by (x, yy t he 
ч • _____ 

inner product 2 ^l)y{i) of x and y. The norm ||a.|| = |/"<(x, a;> of a vector x 
i = i 

and the norm of a matrix were defined in the preceding section. 
Let (Q, J^, P) be a probability space. By random variables we mean measur

able transformations from Q to El9 by random vectors we mean measurable 
transformations from Q to X. If X is a random vector, then we denote by JS>*> 
the random variable defined by the relation X^{co) = [X(co)](*>, by EX 
(expectation of X) the vector defined by the relation [EX]<*> = jXW dP, 
if these integrals have a meaning for every i = 1, 2, . . . , q. By DX we denote 
the q . q (соvariance) matrix the element DW)X of which equals EX^XV). 
Concerning equalities, inequalities and convergence of random vectors or 
variables, they are always meant with probability one. 

In the sequel we shall deal with a function / satisfying 

(2.1) Assumption. / is a non-negative real valued function defined on X, 
D2f(x) exists for every x e X and \\D2f(x)\\ 5j 2K for a number К and every 
X € X . 

For simplicity we shall write D(x) = Df(x); if Assumption (2.1) is satisfied, 
then by Taylor's Theorem we get 

(2.1.1) f(x + У)< № + <У, D(x)> + К \\у\\* 

for every x, y in X. 

3. The choice of the random variables an. Given Xn and Yn the random 
variable ocn determines the length of the move from Xn in the direction deter
mined by Yn. Let a be a positive number; we shall suppose tha t ocn can acquire 
the values a, 2a, . . . only. This assumption is not essential, but removing it 
leads to complications of proofs or to results insufficiently general. 

Let / be a function satisfying assumption (2.1). For со € Q we define two 
functions ç v y « °У t n e relations cpjt) = f(Xn(co) + tYn(co))9 %pjf) = <pm{0) + 
+ t(p'M(0) + t2K \\Yn(co)\\2 for every teEx. By Assumption (2.1) we have 
<P'J0) - <Yn(co)9 D(Xn(co))>, <pjf) ^ jjfi). By т+(о>) and r » we denote the 
product ja where j is the largest principal such tha t the sequence (ры(а), <ры(2а),..., 
<P(o(Ja) is increasing and decreasing respectively. From the two numbers 
r+{co) and T-(CO) at least one is a; if the whole sequence {ç>w(*a)}?Li is increasing 
(decreasing), we put r+(co) = + oo (т~(со) = + ос). 

Now let P(co) be the system of such intervals ((j •— 1) a> ?аУ (j = 1, 2 , ...,. 

° ^ l \ for which <pa(ja) — <pa((j — 1) a) > 0 and denote by < M the Lebesgue 

measure of the union \jP(co) of these intervals. 
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So we have defined three functions r+, r~, oc+ on ß; clearly oc^ is a random 
variable. Since our aim is to minimize (Ро)(осп(со)), we t ry to determine ocn so t ha t 
осп would be small and tha t an would be in some sense not greater in the case 
r+(co) > a than in the case r~(oo) > a. In the next theorem we shall state 
conditions, under which ocn is at least as good as a random variable ß inde
pendent of Xn and Yn. 

(3.1) Theorem. Suppose there exist two numbers cn, an and a non-negative 
random variable ß, assuming values a, 2a, . . . only and such that 

(3.1.1) ЕЖпХп K + ] 2 ^ Cn , 

(3.1.2) EvnJJ = an , EsrnYnß
2 ^ cn 

and that for every со in some subset Q0 of Ü 

(3.1.3) ß((o) < т+(со) => осп{со) ^ ß(co) 

and 

(3.1.4) &n(u>) < T-(OJ) => ß(co) f£ ocn(co) 

and for every w e Ü — Q0 

(3.1.5) \ocn(co) — c(co)\ < OC^(CÜ) + a , 

where c(co) e Ex and 

(3.1.6) q>M<»)) ^ i n f {<PM, t^-в}, <p'M<o)) = о . 
Finally suppose that f satisfies Assumption (2.1). ТТшг 

(3.1.7) Е#п / (Х я + 1) ^ /(X„) + an < Mn(Xn), D(Xn) > + 
+ llcnKE«rn\\Yn\\*. 

R e m a r k . Since in the theorem the index n is fixed, we can omit it in the 
symbols Mn, ££n, Xn, Yn, an, a^', for Xn+1 we shall write X ~\~ ocY and K(co) 
for К ||F(co)||2. Before proving the theorem let us prove some lemmas. 

(3.2) Lemma. Suppose that f satisfies Assumption (2.1.). ТЪ,еп<ры has a con
tinuous derivative 

(3.2.1) ip'jt) = <Г(ш), D(X((o) + tY(co))} 

and a bounded (by 2 К (со)) second derivative. 

For every tl9 t2 we have 

(3.2.2) q>„(h)£ V»(h) + (h - h) Ч>'Лк) + (h - h)2 K(œ) ; 

especially for every t 

(3.2.3) <p„(t) ^ W(0(t) . 

P roof . The conclusions follow from the assumption in a straightforward 
way. 
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hold. 

< + 
resp. 

If 
GO; 

r+(œ) 
then 

(3.3) Lemma. Suppose that f satisfies Assumption (2.1). Then there exists 
a function t0 on Ü such that for every <x> e Q satisfying the condition Max {т+(ш), 
r~(co)} < -f- oo we have , . 

(3.3.1) й Ш ) = о , 

(3.3.2) т+(а>) = a => \t0(co) — r-((o)\ < a 

and 

(3.3.3) r-((o) = a => |f0(o>) — r+(co)| < a . 

Proof. Let со € Q. If r+(a>) = T~(OJ) = a, then 9?w(a) = ç?w(2a) and thus there 
exists a t0(co) e (т-(ео), т-(о>) + a) = (r+(co), r+(œ) -f- a) so tha t (3.3.1) to (3.3.3) 

Ф r~(co) and r+(a>) — a resp. т~(а>) = a, Max {r+(w), т~(со)} < 

<P»(*-(<*>) — a) > <РАГ~Ы) ^ <РЛ*~(о>) + a) 

(Ptoir+iw) - a) < <ры(т+{а>)) ^ <ры(т+(со) + a 

so tha t again there exists a tQ(co) satisfying (3.3.1) to (3.3.3). 

(3.4) Lemma. Suppose f satisfies Assumption (2.1). 

Then 

(3.4.1) r+(co) = a, r-(co) < + oo =><рш(т~((о)) < Min y J«) + a2K(co) . 

P roof . We discriminate two cases: (i) ç>l(0) ^ 0 and (ii) g^(0) < 0. 

(i) In this case ipm increases in the interval (0, + oo), Min tp^t) — гры(а). 
ее а-

From the definition of r~(co) we have ^ ( т - ^ ) ) ^ (ры(а), according to (3.2.3) 
<P(o(a) ~ Wù){a)'- combining the three relations gives an inequality implying 
(3.4.1). 

(ii) Denote t2 = sup {t'\ <p'jt) < 0 for every t e (0, t')}. From the assump
tion r~(co) < + oo it follows tha t t2 < + oo. From the continuity of cp'^ 
it follows tha t £2 > 0 and ç>l(£2) = 0. From the definition of r~(co) it follows 
tha t £2 6 (0, T~(CO) + a) and we shall, prove tha t 

(3.4.2) <P<o(r~H) ^ <P«(h) + a*K(a>) . 

Since the sequence (рм(а), (ры(%а,), . . . , 9?W(T"(CO)) is decreasing, there exists a 
natural number ; such tha t q>Jja) ^ ^w(^~(^>)) and |;\ — £2| < a - Thus we get 
according to (3.2.2) Ç>W(T~(Û>)) ^ ^ 0 « ) ^ <МУ + а2^(ш) and (3.4.2) holds. 

Now 99 w has a second order derivative cp'l and |<^(£)| < 2K(co). Thus |ç?^(0 — 

— <^(0)| < 2tK(o)), which implies £2 > ^ = Z-JEp±JL and hence ç>w(£2) ^ 
2i£(o>) 

^ 9(o(h)' On the other hand it is easy to see tha t ipM(h) = Min y^t). Combining 
t^ a 

our results, we get (рш{тг(а>)) ^ <рМ + a2K(co) <: tpjf^ + a2K((o) ^ Vw(^) + 
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+ a2K(co) S Min %ры(Ь) + a2K(co). Thus (3.4,1) holds in the case (ii) too, 

and the lemma is proved. 

(3.5) Lemma. Suppose all assumptions of Theorem (3.1) hold and put r = 
= Max (T- , T+). 

(3.5.1) d « M ) - Р»(Ф>)) ^ ВД {8 [*+(œ)]2} 

as socm 6*5 ос(со) ^ г (со) and 

(3.5.2) |ye(j8(e>)) - ?>Ш(Ф>))1 ^ 2 £ » ВД 

as soon as г (со) < + °о. 

P roof . From the assumption oc(co) ^ r(co) it follows tha t r+(co) and т~(со) 
are finite. Remember tha t ot+(co) is the Lebesgue measure of the union \jP(co) 
of the system 

P(co) = {(ja, (j - 1) a}; tpjja) - cpMj - 1) a) > 0, ? - 1, 2, . . . , 
a ^ ja ^ oc} . 

Now U^P^) c a n be written as a union of another system B(co) of disjoint inter
vals <сг, d,> (г = 1 ,2 , . . . , &), where сг, йг are integral multiples of a, 

(3.5.3) ç>w(d,) ^ <pJcM) , » = 1, 2, . . . , fc - 1 

and 

(3.5.4) 99w(c, — a) ^ 9?w(c,) < ç>w(dt-) for every г = 1, 2, . . . , fc , с, ^ a . 

Thus there exist numbers £г- such tha t с>ш(£г) — 0, £, € (сг — a, d{) for every 
г = 1, 2, . . . , fc, сг ^ a. Hence we get 

^ {№ - hY + (ct - ^)2} K(co) ^ 8(d< - c,)2 K(co) : 

(3.5.5) ç>w(d,) - q>Jct) < 8(d< - c,)2 K(co) 

for every г = 1, 2, . . . , к such tha t с, ^ a. 

The exceptional case сг — а < 0 occurs only if i = 1, C j = 0 and is of interest 
for us only in the case T(Ö>) e (c1? di). However in this case there exists a t0 = t0(co) 
(see Lemma (3.3)) such tha t (pf

a(t0) = 0 and \t0 — т( а >) | < a which implies 
£0 € (съ dx). Hence 

4>Jfli) ~ <P»(°i) = VM - <PM - (<^(ci) - $»{%)) ^ [(dt - hf + 
+ (Cl - У2] ВД ^ 2 K ~ <>i)* 

and thus 

(3.5.6) <ры(аг) - cpvicù^ S(di - c j 2 if сг = 0, т(со) e (c b dx) . 
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Now if / is the set of such indices i, that (ci9 d{) с B(co) and dt ^ r(co), then 
from the definition of В (со) it follows that 

<P<À*(co)) - Ç>»(T(Û>)) ^ 2 fa*(d<) ~ 4>dfii)~\ 
i€i 

and this is according to (3.5.5) and (3.5.6) equal to or less than 

2m - ctY K{to) . 

However ]£(<*< - c<)2 ^ ß K - c * | ] 2 ^ K M ] 2 which proves (3.5.1). 
iel iel 

I t remains to prove (3.5.2). If r{co) < -f- oo, then according to Lemma 
(3.3) there exists a t0(co) such tha t 9?1(£0(

ш)) = 0 a n (^ |T(o>) ~~ ^o(^)| < a- By 
(3.2.2) we get two inequalities 

1<Р*(Ф)) - <Р»Ы<»))\ < а2К{ы) , 
\<РЖ<о)) - <PJtoH)\ < (ß(co) - t0(co))* K(co) , 

which imply (3.5.2); the proof is accomplished. 

(3.6) Proof of Theorem (3.1). Let r = Max (т-, т+) and define 

Аг = {со; r(co) > oc(co)} n ß0 , A2 = {со; г (со) 5g #(co)} n Ц> , 
JB_! = {со; r+(co) = a} n û0, B1 = {со; т+(со) > a} n i20 , 

We remember t ha t (see (3.2.2) or (3.2.3)) 

(3.6.1) q>Jf) < <p„(0) + tcp'jO) + t*K(a>) = y>M) -

If со € A± n B_lf we have oc(co) < r~(co) and even /?(G>) ^ oc(co) < т~(со) by 
(3.1.4), which gives, according to the definition of r~, <pw(ß(to)) ̂  ^(^(co); 
hence by (3.6.1) we get 

(3.6.2) coeA.n В_г => ? „ ( а И ) ^ <pw(0) + 0 M < p » + j82M ВД . 

If со € A± n JB1? we have oc(co) < т+(ео). Since (3.1.3) is equivalent to oc(co) > 
> ß(co) =><x(co) > ß(co) ^ r+(co), we have oc(co) < ß(co). If /?(co) 5g т+(со), then 
9>W(*M) ^ <Pv(ß{(o)). If i»(w) > r+(tt)), then <p„(<x(œ)) ^ <pw(r+(co)) and — by 
(3.5.2) — (ры(т+(со)) < (fMco)) + 2ß2(co) K(co). Hence and according to 
(3.6.1) we get 

(3.6.3) со€Агп B1^>cPu)(a{co)) ^ c>J0) + ß(co) <p'„(0) + 3 ß » ВД . 

If со e A2 n i?_1? we have OC(CJO) ^ r~(co) = r(co). Since r(co) is finite, we may 
use Lemma (3.4) to get 

Ы т - И ) ^ Min y>„(t) + a*K(a>) < y>M°>)) + ^ И ^ 
t ^ a 

^ n ( 0 ) + ß{f») y'JO) + 2ß*(co) K(a>) . 
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Hence and according to (3.5.1) we get 

(3.6.4) со € A2 n В_г=хрш(<х(о>)) ^ (рш(0) + ß(co) <?L(°) + 

+ {2/P(a>) + 8[*+(co)]2} ВД . 

If со e,42 n 5 1 ? then a(a>) ^ T+(Ö>) = r(a>) which implies (see (3.1.3)) tha t 
also ß(co) ^ r(co). Hence and according to (3.5.2) we have (рЛг(ы)) ^ <PAß{co)) + 
+ 2ß*(co) K(œ); by (3.5.1) q>»{<x(œ)) < <ра{т(со)) + 8 [ л + И ] 2 Щсо) and thus 

(3.6.5) со € A2 n Вг => (рш(ос(со)) < <рш(0) + ß(co) tpJP) + 

+ {8[*+(а>)]* + 2/S»(o>)} Я(со) . 

Finally if со е ß — ß 0 , then according to (3.1.6) ^ ( c M ) g ç><y(j8(a>)) and 
^^ (co ) ) — 0, which with the inequality (3.1.5) g ives Yd) 

(oc(co)) g 9°ш(с(со)) + 
+ (4[oc+(co)Y + a2) K(<o). Thus <?wHco)) ^ ç> J|8(a>)) + №+(co)] 2 + а2) ВД 
and 
(3.6.6) со с ß - ü0 =><p„(*{a>)) ^ <pw(0) + ß(co) <p'jfi) + 

+ {2/?2(co) + 4[*+ (со)]2} К(со) . 
Since (Аг n JB_J) и (Аг n J3J и (A2 n B_x) и (Л8 n Si) и (fi - Q0) = fi? 

the relations (3.6.2) to (3.6.6) give 

(3.6.7) со € fi => Ç>W(«(Û>)) ^ ç>e(0) + j8(o>) ^ ( 0 ) + {8[*+(co)]2 + 

+ 3£2(co)} K(co) 
Hence 

(3.6.8) f(X(co) + oc(co) Y(co)) rg f(X(co)) + ß(co) <7(co), D(X(œ))> + 
+ Z(8[^(co)] 2 + 3i3

2(co))||r(co)||2 

and by (3.1.1) and (3.1.2) 

(3.6.9) Esrn,Ynf(X + ocY) < f(X) + an <Мя(агя), D(X)} + l l c j f | | 7 | | 2 , 

which implies (3.1.7). The theorem is proved. 

4. Particular choices of length ocn of the w-th step 

(4.1) Theorem. Suppose f satisfies Assumption (2.1) and ocn = ая is a number. 
a2 

Then (3.1.7) AoZefe г<ЛА ся = - ~ , i. e. 

(4.1.1) E%J(Xn+1) g /(XnJ + an <Мя(агя), D(Xn)> + awE^n ||ГЯ||2 . 

P roof . Since Х я + 1 = Х я + а я Г я , (4.4.1) follows directly from (2.1.1). 

In the preceding theorem a simple way of choosing ocn is described, which 
was hi thertho used by authors proposing approximation schemes. However 
a more refined definition of ocn can save us observations, especially, if the 
number q of dimensions is large and if Xn is far from the extremal point we 
seek. 
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In the following theorem we describe such a method. We note tha t the 
condition (4.2.1) will be satisfied for example if тг- = f(Xn + iaYn). The 
random variables Vi can be called estimates of mu or especially of f(Xn -f- iàYn). 
The generality obtained by introducing the variables mt- is useful in the 
cases in which / cannot be observed and observations of another function R, 
related to /, are a t our disposition. 

(4.2) Theorem. Let f satisfy Assumption (2.1), let n be a natural number, 
a, d, с real positive numbers. Let Vi9 mt(i = 1, 2, . . .) be random variables such 
that for every j = 1, 2, 3, . . . ; i = — 1,1; i -f j ^ 1 

(4.2.1) f(Xn(a>) + jaYn{m)) > f(Xn(a>) + (j + i) aYn(a>)) => 
=> mj(œ) ^ mj+i(co) 

and that 
00 

(4.2.2) 2 к'рагя.Уп (V* -*h>Vt-mt>...>V]t-mb£ 
k = l 

^ Vk+1 — mk+1} = 1 for 5 = 0, = d for s = I, ̂  с for 5 = 2 . 

Define ocn(co) = &a /or со m £Ae se£ 

(4.2.3) Л = Wx > V2 > ... > Vk ^ Vk+1} 

and suppose that 

(4.2.4) 

Then (3.1.7) holds for an 

Proof . Define ß(co) = 

(4.2.5) £fc - {Fx - mx > V2 - m2 > . . . > Vk - mk ^ Ffc+1 - mk+1} . 

For the proof of the theorem it suffices to show tha t assumptions of Theorem 
(3.1) are satisfied. The condition (3.1.1) is repeated in (4.2.4), (3.1.2) follows 
from (4.2.2), / satisfies Assumption (2.1) and it remains to prove tha t (3.1.3) 
to (3.1.6) hold for some £Э0 с Ü: we shall show it for Q0 == Q, in which case 
(3.1.5) and (3.1.6) are trivial. 

We shall prove (3.1.3); let œeU, ja = ß(a>) < т+(со). Then f(Xn(co) + ß{co) . 
. Yn(œ)) < f(Xn(œ) + {ß(co) + a) Yn(œ)) and according to (4.2.1) 

(4.2.6) тДео) fg Щ+г(со) . 

From the definition of ß it follows tha t Vj(co) — m (̂co) ^ Vi+1((o) — mj+1(œ) 
and according to (4.2.6) F,(cw) < Vi+1(a>). Thus ocn(co) S ja = ß((o) and (3.1.3) 
is proved. 

I t remains to prove (3.1.4). Let со e Q, ja = ocn(a>) < r~(co). Then f(Xn(o)) -f-
+ ocn(œ) Yn(a>)) > f(Xn(co) + (ocn(co) + 1) Yn(a>)) a n d . - according to (4.2.1) -
m^œ) ^ nhj+1(œ), which with the obvious inequality Vj(co) ^ Vj+1(co) gives 

= aeü and cn = a2c. 

kan if со is in the set 
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Vj{œ) ~ mj{m) < F^+i(co) -- ш^+^(а>). But the last inequality implies ß(a)) ^ 
^ ja = ocnico) and the proof of (3.1.4) and of the whole theorem is accomplished.. 

The preceding theorem imposes some very weak conditions on the estimates 
Vi of m^. Their generality will be apparent in the next theorem. 

(4.3) Theorem. Let f, m,- satisfy the conditions of the preceding theorerrir 

let Vi be random variables stich that Vi = Vi — m^ are distributed indeperidently, 

identically and continuously and are independent of ^^ , Y^. Then (4.2.2) holds 

with 
00 00 

/ / a^ is defined as in the preceding theorem, (4.2.4) and (3.1.7) hold with 
a^ = ad and c^ = аЧ, 

Proof . Obviously 

Р^п^Уп (^1 > 1̂ 2 > . . . > F , ^ F,_i) = P{V, > F , > . . . > F , ^ F,^,) = 
к 

(к + 1)Г 
which implies (4.2.2) with с and d given by (4.3.1). We shall show tha t (4.2.4)» 
holds. Denote (pj = / (Z^ + jaY^) and let 

(4.3.2) 
K(co) 

и < Щ(а)), щ(а)) + hi{œ)) = U {</ - 1. ?)', ? = 2,3,..., 9^,„i(a)) < (p^{m)} 

where ni, hi are natural number valued functions on Ü, K{CD) is a natural^ 
number or + oo and 

(4.3.3) % < % + Ai < tig < . . . . 

I t is easy to see tha t , by the relations (4.3.2) and (4.3.3), K, ni and hi are 
uniquely determined random variables (К possibly infinite) and tha t they 
are functions of [^^, Y^l only. Fur ther we have 

(4.3.4) a-K = 7 + 2{Ä.; i = h 2, ..., Щ + h ^ ^} , 
where y is positive par t of ç̂ ^ — (р^: 

N 

Thus, denoting by N the index for which ^hi = к — y, the event {ос^ — ak} 

implies the event 
N f 

(4.3.5) n U , + Ä . < ^ 

and this implies, according to the definition of oc^, the event 
N 

(4.3.6) n {Vn, > Fn.+i > . . . > Vn.^u) 
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However from (4.3.2) it follows tha t 

(4-3.7) cpn. < <pnj+1 < ... < cpnj + hj 

which gives according to (4.2.1) the inequality 

4.3.8) mn. ^ mn.+1 ^ ... < mn.+ hj. 

Since Vi = Vi — mi9 the event in (4.3.6) implies the following 

(4-3.8) П {7„, > V„i+1 > ...> Vn.+h>} 
7 = 1 

and we get t ha t 
N 

(4.3.9) Pf T {oci = ak} ^ Рж T n {V > *Vi > ... 

iV(co) 

••• > ? W = П(Щ+Т)!' 

the last equality being due to the fact t ha t Vn. are independent, continuous 
and tha t the sequence Vv V2> • ••> is independent of \ßn, Yn], щ, hi, N. Thus 
P& ,Y fan = аЩ n a s a n upper bound of 

1 

( Ш Т Т Ж М + ГУТ... (Лм^йТ^)! 
iV(ö>) 

where 2 АДсо) ^k ~ 1. Thus there are at least & — 1 factors greater than 
i = l 

2 in the denominator, which implies 

(4.3.10) PXn>Yn К = ak} ^ — , 

whence (4.2.4) follows with с defined by (4.3.1). Since the last assertion of 
the Theorem follows from Theorem (4.2), the proof is accomplished. 

The two theorems already proved deal with the problem of approximating 
a point at which the function estimated acquires its minimum. An analogous 
result for the situation of the Bobbins — Monro procedure is given in the 
following theorem: 

(4.4) Theorem. Let f be a function defined on Ег staisfying Assumption (2.1), 
decreasing in (— oo, O) and increasing in (0, + oo). Let n be a natural number, 

a a positive number and Vi9 Mi (i = 1, 2, . . .) random variables such thai Vi = 
= sign (Vi — т г ) are independently and identically distributed random variables 
independent of Жп, Yn with Е7г- = 0. Suppose that if f is increasing resp. de-
creasing in the point Xn(co) + jaYn(co), then m^co) is non-negative resp. non-
positive. 
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Let ocn((o) = ja for со such that 

— sign Yn(co) = sign V^co) = . . . = sign V^co) + sign F,(co) 

{i/ — sign Гп(ш) Ф F1(a>), we put ocn(co) = 1). TÄew (3.1.7) holds with an = 
= 2a, cw = 6a2. 

P roof . Let us denote by Q0 the set of those со € Ü, for which the interval 
{Xn(co), Xn(co) + ocn(co) Yn(co)y и (Xn{co) + ocn(co) Yn(co), Xn(a>)) is non-empty 
(i. e. Yn(co) Ф 0) and does not contain 0 . Further put ß(co) — ja for such со t ha t 

— sign Yn(co) = Уг(со) = . . . == F,-_!(co) ф 7Дш) . 

We shall prove tha t for our Q0, ß the relations (3.1.3) and (3.1.4) hold. If 
со e Q0 and ja = ß(co) < r+(co), then т+(со) > a, i. e. either (i) Xn(co) 5j 0 
and sign Гп(со) = — 1 or (ii) Xn(co) ^ 0 and sign Yn(co) = 1. In the case (i) 

1 Ф F,-(co), i. е. 7,(а>) rgj тДо>) and since Xw(o>) + ß(co) Yn(co) < 0 and thus 
•m^co) ^ 0, we get Vj(co) ^ 0, sign Vj(co) Ф — sign Yn(co), which implies tha t 
ocn(co) ^ aj = ßn(co). Thus (3.1.3) is proved in the case (i). The proof in the 
case (ii) is analogous and will be omitted. Now turn to (3.1.4). If со е Q0 and 
aj = лп(со) < т_(бо) we have either (i) Xn(co) < 0 , Yn(co) > 0, Xn(a>) + 
+ ocn(co) Yn(co) < 0 or (ii) Xn(co) ^ 0 , 7n(w) < 0, Xn(co) + ocn(œ) Yn(co) > 0 . 
I n the case (i) — 1 Ф sign Vj(co), i. e. Vj(co) ^ 0 and since m^co) ^ 0, we have 

Vj(co) > —- 1 so tha t ß(co) ^ jan = an(o>). (3.1.4) is proved in the case (i); 
the proof for the case (ii) is similar and is omitted. 

Now ii со e Q — Q0, then either Yn(co) = 0 and in this case (3.1.5) and (3.1.6) 
are satisfied by taking c(co) = ocn(o)), or the interval (Xn(co), Xn(co) + ocn(co) . 
, FW(Ö>)> и (Хп(со) + aw(co) Fw(o>), Xn(co)) contains 0 . In the last case 

<3.1.5) and (3.1.6) are satisfied bv c(co) = g j ~ j ^ H . 
J' 7*(0>) 

^Finally it is easy to see tha t 
OO 

E# n , r / = ^ = « 2 ?' b j = 2a = an , 

00 

E<rn, F / 2 = E/?2 = a2 J ? Щ = 6 a 2 = C" 

and 
Ед- у К ' ] 2 ^ E/?2 = c„ . 

Since / satisfies Assumption (2.1), all conditions of Theorem (3.1) hold and 
(3.1.7) is proved. 

We have seen that , if / satisfies Assumption (2.1) and if for every n ocn are 
chosen in one of the ways described in Theorems (4.1) to (4.4) (not necessarily 
in a unique way for every n), then the following assumption holds. 
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(4.5) Assumption. For every », the relation 

E r f(Xn+1) ^ f(Xn) + an <Mn(3-n),D(Xn)> + a\ CE^ \\Yn\\*, 

holds, where aM, (7 are positive numbers. 

5. Convergence theorems. The following lemma and theorem are slight 
modifications of Blum's [2] results. 

(5.1) Lemma. Let | w be non-negative random variables and let 
CO 

(5.1.1) 2 E0n < + 00 , 
re = l 

where &„ denotes the non-negative part of the random variable 

(5.1.2) 0n = E^1>|a,...,^M_1 In — fw-i • 

^Летг Йе sequence f г- converges to a random variable f. 

P roof . Pu t ai - 2 0 / and d = $i - &. We have £ n ' = #* - ft. = 

= # n _ i - j " C/n Çn ~ "n-l ~f~ &n — ьw ~ v'n-l i &n b n - r (sn ~~* Ь п - l ) === 

= Cn~.i + @n — (£n— fn-i)- According to (ö. 1.2) we have Eft ^ [ в п - (fn — 
— Irc-i)] — 0 and thus 

however f1? . . . , Cn-i are functions of £1? . . . , fw-i only and thus 

( 5 Л - 3 ) ECl„, ^ ^ ^ C w - n 

which shows tha t the sequence ;1? t2> • ••, is a semimartingale. Now (5.1.1) 
guarantees tha t sup Eên < + со which implies, since £n are non-negative, 

re 

tha t sup ECn < + oo. On the other hand 
re 

E ( |C | - С ) ^ E£n - Е#я - EÇn rg sup E0n - E ^ , 

for by (5.1.3) E£i fg Ef2 fg But in this way we have proved tha t 

(5.1.4) sup E \Cn\ < + oo , * sup E | n < + oo . 
re re 

From the first of the inequalities it follows by the martingale theorem (see-
Theorem 4.1, Assertion I of Doob [6]), tha t f„ is a convergent sequence. 
Since the non-decreasing sequence &n converges according to (5.1.1), 
in also converges to a random variable. 

(6,2) Theorem. Let Assumptions (2.1) and (4.5) hold, let Bn be non-negative, 
functions on Q, let bn, dn, en, K2 be positive numbers and let 

(5.2.1) <MM(J"n), D{Xn)) S - Bl + bn(K2 + Bn) , , 

(5-2.2) ||М„(ЗГ„)||2 g 4 + e„5* , 
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(5.2.3) E^ \\Yn - ЩЗГЖ ^ dn + enBl, 

(5.2.4) SaM = + oo, Sanbn < + oo, S a j i n < + oo, Km bn = 
= lim anen = 0 . 

ТАетг £Äere existe a sequence n{ and a set Q0 с Q such that P(Q0) — 1 am? £йа£ 
Km f(Xn(co)) exists and is finite and lim Bn(co) = 0 /or even/ со € Ц,. 
n-^-oo i—5-00 

/ / £ue functions Bn depend on Xn only, i. е. г/ Б,, = B(Xn), where В is a function 
on X, then for every со е Q0 

(5.2.5) lim f(Xn) e {a; x{ € X, x{-> x € X, a = f(x), B(x{) -> 0} и F , 

wAere i'7 = {a; а̂  e X, | |xj | -> + oo, f(x{) -> a e 2^, -В(#г-) -» О}. 

/ / 5 is continuous, then 

(5.2.6) lim /(Хя(о>)) е /({ж; ВД = 0}) и F . 

Proof . By Assumption (4.5) we have 

E^ f(Xn+1) ^ f(Xn) + an <Mn(#„), D(Xn)> + a\ CE^ \\Ynf . 

From (5.2.2) and (5.2.3) we get 
Еж \\Yn\\* ^ 2dn + 2enB2

n 

and thus 
E#n/(X«+i) ^ /(Xn) + * » ( - ^n + M * 2 + A J ) + 2 a n K + en5n) (7 = 

П 9n P Г\ In* Ьп Я 2andnG + ЪпКЛ 
„(1 - 2anenC). \Bn - p ^ ^ ^ Д . ~ - j _ ^ ^ j 

(since only limiting properties are of interest, we may assume with respect to 
(5.2.4) tha t 2anenG < 1). Put t ing 

/ i n = an{\ — 2awenO) , 

= — an 

Qn 

1 — 2anenC ' 
2andnC + bnK2 

1 - 2anenC ' 
we get 

(5.2.7) Ь (f(Xn+1) - f(Xn)) ^ - fxn[Bl - vnBn - Qn] , 

where /ип, vn, gn are positive numbers, satisfying according to (5.2.4) the re
lations 

(5.2.8) £//.„ = + oo, 2 / * л < + oo, Tt/inQn < + oo, Km vn = 0 * 
Since only limiting properties are of interest, we may assume tha t vn < \ 

for all n. P u t 
Л if Bn > 1 , 

\ 0 if £ „ < 1 ; 
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then 

(5.2.9) (1 - Xn) vnBn < vn, Bl - lnvnBn ^ 2 B l -

Since according to (5.2.7) E&n(f(Xn+1) — f{Xn)) < — [лп[Вп — lnvnBn — Qn] +• 
+ fin(l — Àn) vnBn4 we get by (5.2.9) 

(5.2.10) E<rn(/(^n+i) - f(Xn)) ^ - 2 ^nBn + ^Vn + ^ ' 

Hence we get, since /un(vn + £и) > О, 

(5.2.11) {*fixl),nxt),...,Hxn)(f(Xn+1) - /(*„))}+ < Mvn + e n) , 

where on the right we have a summable sequence /un(vn + Qn)- This is (see 
Lemma (5.1)) a sufficient condition for the sequence f(Xn) to be convergent.. 

Now let us denote 
, r л , rt4 ~ — E&J(Xn+l) + /№г) + /ИЯ(УЯ + Qn) 
(5.2.12) On = ^— — . 

By 5.2.10 we have 0^\в1<Сп and 

E$?J(Xn+1) — / ( X J <£ — /unGn + /jn(vn + gn) > 

E(f(Xn+i) — /(-ЗГп)) ^ — Н»ЛСп + fin[yn + Qn) , 

E / Ä + I ) ^ /№) — 2^лЕся + 2^(^ + &) • 
GO 

Since by (5.2.8) 0 < 2 ^ ( ^ " + £*) < + °o and since f(Xn+1) ^ 0, the non-

n 

positive term -- T/^EC^ converges, too, which implies the existence of a 

sequence m^ such tha t ECm. -> 0, whence it follows tha t there exists a ß x с fi 
with P(fii) = 1 and a sequence пг- such tha t Cn(co) -> 0 for every a> e fix. 
However the inequality B\ ^ 2Cn implies tha t Bn(co) -> 0 for every со е иг. 
Formerly we have proved tha t there exists a fi2 с fi of probability one and such 
tha t f(Xn(co)) converges to a number if со € Q2. Clearly f(Xn(co)) converges to 
a number and Bn.(co) -> 0 for every со e Q0 = иг n Q2 and P(QQ) = 1. 

Finally let Bn = B(Xn) for a function В and let со е QQ. We may choose 
a subsequence xt of the sequence Xni(co) such tha t either #г -> ж е X or \\х{\\ —> 
-> + °°- I n the fi r s^ c a s e w e ge^ by the continuity of / t ha t lim f(Xn(co)) = 
= lim /(#г-) = /(x) and lim Б(хг) = 0. Hence the relation (5.2.5) follows. 
Since (5.2.6) is a direct consequence of (5.2.5) and of the assumed continuity 
of B, the proof is accomplished. 

(5.3) N o t e . In the preceding Theorem (5.2.1) with bn -> 0 is a basic condition,, 
which ensures tha t <Mn(^*w), D(Xn)} is negative at least if n and Bn are large. 
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Hence, from (5.2.7) and from the non-negativity of / it was then possible 
to deduce tha t for every со there exists a sequence ni such tha t Bn{co) -> 0. 
This is of interest for example if Mn(^n) is such tha t Bn = ||D(Xn)||. In this 
case (and if certain conditions are satisfied, in a more general case Bn — 
= \\Hn(№n) D(Xn)\\ (see also the following theorem) the condition (5.2.6) can 
be written as 

(5.3.1) lim f(Xn(a>)) eA и Аг , 
re—>co 

where 

(5.3.2) A = f({x; D(x) = 0}) 

and 

(5.3.3) A1 - {a; x, e X, \\х€\\ -> + oo, D(xt) -> 0, f(xt) -> a e Ex] . 
I t is easy to see tha t if | |Xn( со) || is bounded for every со е i20 (and this condition 
will be satisfied if e. g. the assumptions of Theorem (5.5) hold), then (5.3.1) 
can be strengthened to 

(5.3.4) lim / ( ! » ) e A = f({x; D(x) = 0}) . 
re—»oo 

However in certain cases (5.3.4) can be also deduced from (5.3.2) and (5.3.3). 
For example, in Sections (6.1), (6.2), (7.1) and (7.2), ]\х{\\ -> oo implies /(х{) -> 
-> + со so tha t Ax = 0. Similarly if inf {||D(x)||; \\x — 0\\ > e} > 0 for every 
s > 0 (see (1.4.1) for Л = / ) , then again Ax = 0 and (5.3.4) holds; moreover 

(5.3.5) l i m / ( Z » ) = / ( e ) 
re—»oo 

and / has at в its absolute minimum. If further conditions are satisfied, e. g. 
t ha t inf {|/(0) - f(x)\; \\x - G\\ > s} > 0 for every e > 0 (see (1.4.1)), then 
(5.3.5) implies 

(5.3.6) Xn(co) -> в . 

In this connection we remark that , from the practical point of view, usually 
not the distance between Xn and 0 is of interest, but the distance between 
f(Xn) and inf f(x). The second formulation avoids certains unessential difficult 

xeX 
ties which arise with the first. For example if f(y) = inf f(x) for every у in 

xeX 

a convex set containing more than one point, we are not able to establish 
a relation of the form (5.3.6), although from the practical point of view such 
a situation may be considered as agréable for stability reasons. 

Let us return to the relation (5.3.4). The case in which the set {x; Dx = 0} 
consists of a single point 0 (the non-negativity of / then implies tha t if / 
aquires its absolute minimum it does so at 0) has been discussed. However, 
there are many practical situations in which {x; Dx = 0} consists of more 
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than one point .In this case, it is natural t ha t in general the relation lim f(Xn) = 
П-+00 

= inf f(x) does not hold and tha t lim f(Xn(œ)) may converge to f(x), where 
xeX 

at x f acquires its local minimum. Indeed in such a situation there is, in our 
opinion, no other way to approximate the point of the absolute minimum than 
a systematical estimation of f(x) for every x in a reasonably dense net in X. 
Let us denote by A+ and A__ the sets of points at which / has its local maximum 
and minimum respectively. As we mentioned, we have no chance to prove 
tha t \imf(Xn) = inf f(x). By Theorem (5.5) it is easy to construct examples 

xeX 

showing tha t every effort to prove tha t lim f(Xn(œ)) e f(A__ — A+) would 
also be unsuccessful. However we did not even succeed in proving lim f(Xn(co)) e 
с f(A_) for almost all со e Ü, which is perhaps a consequence of the fact, t ha t 
the method of proving Theorem (5.2) is based on the first derivative D, which 
does not distinguish between the points of Д+ and A^. 

The next theorem will sometimes be useful in verifying the conditions of 
Theorem (5.2). 

(5.4) Theorem. Let n be a natural number and let for every x eXn Hl(x) 
be a non-negative hermitian matrix, i. e. let (Hn(x)a, by = (Hn(x) a, Hn(x) by for 
every x e Xn, a, b e X. Let 

(5.4.1) Mn(#n) = - El(3£n) D{Xn) + Kn6n{Xn) , 

where On is a matrix function on Xn, hn is a number and 

{5.4.2) \\Bn(Xn)\\ ^ 1 , hn^0. 

Let further 

{5.4.3) ПОДОII ^ 9n(Cx + \\Hn(Xn) ОД0Ц) , 
where gn, Сг are non-negative numbers. Then (5.2.1) holds with 

(5.4.4) Bn = \\Нп(ЗГп) D(Xn)\\ , K2 = Cl9 bn - hngn . 

P roof . If (5.4.3) holds, then from (5.4.1) we get 

<МЯ(ЗГЯ), D(Xn)y - < - Е\{Жп) D(Xn), D(Xn)y + К <0n(3Fn), D(Xn)y £ 

^ - (Hn(&n) D(Xn), Hn{%n) D{Xn)y + К \\D(Xn)\\ ^ 

£ - \\Йп(Хп) DA)II1 + Кдп{Сг + \\Ня(ЗГп) D(Xn)\\) , 
so t ha t (5.2.1) holds with Bn, bn and K2 defined by (5.4.4). 

(5.5) Theorem. Let Mn (S£n) = Ып(Хп), where Nn are function on X, satisfy 
(5.2.2) and (5.2.3) with en = 0, let (5.2.4) hold. Let there exist a r > 0 such 
that for every i =? 1, 2, . . . , q sign Ы^(х) . sign #( i) g 0 if |# ( i ) | > r. Let 

ocn = an, or let ocn be defined as in Theorem (4.3) with a = °^-and with such mt 
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that (instead of (4.2.1)) if denoting by ô(x) the distance of x from the set {x; x e X, 
\%(i)\ < r} we have for every i — — 1, 1; j = 1, 2, . . . ; i -j- j >̂ 1; OJ e Q 

(5.5.1) ô(Xn(œ) + jaYn(co)) > ô(Xn(co) + (j + i) Yn(oo)) => m,(œ) > 
^ mj+1(co) . 

Then there exists a subset Q0 с Q of probability one and such that sup \\Xn(oj) 11 < 
n = l , 2 , . . . 

< + oo for every со е Q0. 
Q 

Proof . P u t f(x) = ô2(x) = 2 (l#(i)l — r)2
( -

5) Clearly / satisfies Assumption 

(2.1) and 
ВЩх) = 2(\x(*)\ — r)+ sign a?(<) , 

so tha t (5.2.1) is satisfied with 5 n = 0, 6n = 0. From Theorem (4.1) or (4.3) 
it follows tha t Assumption (4.5) holds. We may apply Theorem (5.2) and the 
boundedness of ||Xn(<o)|| for almost every со follows from the convergence of 

The simple condition concerning sign N(i)(#) is satisfied e. g. in the case 
of the search for a minimum of a function B, if sign NJf(Xn) = sign [R(Xn) — 

— B(Xn + cnAW)] and if sign &*Щх) . sign #( i) ä 0 for \x^\ > - > cn. In 

r 
this case also (5.5.1) is satisfied if a < - , m, = B(Xn -\- jaYn). 

6. The Robbins-Monro method and its modifications. (6.1) Suppose tha t B, 
Yn, an satisfy the conditions of Theorem (1.2), but let us require 

(6.1.1) B(x) <0 for x < в , B(x) ^ 0 for x > 0 

instead of the stronger condition (1.2.1). Define f(x) = \x — 0)2. Then minimiz
ing / is formally equivalent to solving the equation B(x) = 0. 

Suppose further tha t ocn are chosen in such a way tha t Assumption (4.5) 
holds with a suitable constant С Theorem (4.1) says tha t this is so if ocn = an 

as in Theorem (1.2). However this is not the unique possible choice of ocn as 
we have proved in Theorem (4.5). Thus we may, after determining the value 
Yn(co), observe estimates Уг(со), V2(co), •••, V^co) of values 

л ( * „ И + | 7 » ) , *(*»(«>) + 2 ^ Гя(а))), . . . , л ( х , И + ? ^ 7,(0))) 

until all but the last have the same sign as the estimate — Yn(co) of B(Xn(co)). 

According to Theorem (4.4) we then put ocn(co) = j -~. If the errors Vi — V\ — 
Â 

i - ^ 7 are independently and identically distributed with — BlXn 

5) By a+ or a+ and a_ or a~ we denote the positive and negative part of a respectively; 
= a+ + a_. 
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E sign Vi — 0, if they are also independent of 3Cn, Yn, then all the conditions 

of Theorem (4.4) are satisfiedIwith т г = R\Xn — г -~ Yn\\ and Assumption 

(4.5) is again satisfied with С — 6. 
Now we shall study the behaviour of Xn under the assumptions accepted. 

Without loss of generality we may assume that O = 0. Then we have f(x) = x2
y 

D(x) = 2x, — Mn(&n) D(Xn) = 2B(Xn) Xn is non-negative and thus (5.2.1) 
is satisfied with Bn = ]J2XnR(Xn), bn = 0. The assumption (1.2.4) implies. 
(5.2.3) with dn = a2, en = 0; a fortiori (5.2.3) holds with en = J. + B, dn = 
= B(A + -ß) + #2; we shall show tha t with these ew, 6n (5.2.2) also holds. 
Indeed by (1.2.4) and (1.2.2) we have 

||Mn(<rn)||* = R*(Xn) ^ \R(Xn)\ (A \Xn\+ B) ^ABl'4- В \R(Xn)\ . 

Now for \x\ ^ 1 we have \R(x)\ ^ A + B, for \x\ > 1 we have \R(x)u ^ 
< \x\ \R(x)\ ^ B2

n; hence 

||M(^n||2 ^ ABl + B(A + B + B^l
r {A +B) Bl + B(A + B) fg enBn + dn .. 

Since (5.2.4) follows from (1.2.3), all assumptions of Theorem (5.2) hold. 
Hence f(Xn) converges to a random variable and there exists a sequence % 
such tha t B\. = XnR{Xn) -> 0. Hence we get 

lim X 2 -> {а2; â  e El9 xi -> a, х^{хг) -> 0} = 

" {̂ } U {a2 ' ^г e ^1> ^г "^ a? -В(̂ г') "^ 0} . • 
If moreover (1.2.1) holds, R{xi) -> 0 implies, if xt -> a, t ha t xt -> 0 and thus 
in this case, X n -> 0. 

(6.2) Suppose we again seek the point О a t which a function Д, defined 
on El9 acquires its zero value, we have the sequence an satisfying (1.2.3), Yn 

are again estimates of — R(Xn), Assumption (4.5) holds, but we put 

(6.2.1) Xn+1 = Xn + ocn sign Yn . ' 
> •'"4 / \ V~4 / 

Denoting sign Yn = F n , R(Xn) = E^ F n , we deal with the usual Robbins-
Monro approximation scheme for the function Л. Automatically it satisfies 
conditions (1.2.4) and (1.2.2) and the meaning of condition (1.2.1) or (6.1.1) 

for R is clear from the relation 

B(Xn) = P&n(Yn > 0) - Pvn(Yn < 0) . 

We note tha t the procedure (6.2.1) for ocn — an was already studied by Blum [1].. 

(6.3) N o t e . If ocn are determined in the way described in Theorem (4.4), 
the procedure is related to tha t of Harry Kesten [13] in the following way: 
if Yn and V^ take on only the values — 1,1, the two methods are iden
tical. Generally, instead of estimating R at the points Хп(а>) + aYn(oo), Xn -f~ 
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+ 2aYn(co), ...,Xn-\~ <xn(co) Yn(co), Kesten's method takes observations at 
the points Xn(co) + aYn(co)9 Xn + a(Yn(œ) — Vx(co)), . . . , Хп(ш) -f a(Yn(co) — 
— V^co) — . . . — Vj(co)) (where осп(со) — ja; however there are differences 
between Kesten's and our notations). ' 

7. The Kiefer-Wolfowitz method and its modifications. (7.1) Suppose t ha t 
R, Yn, an, cn satisfy the conditions of Theorem (1.3), but require, instead 
of (1.3.1), the following weaker condition 

(7.1.1) D(x) ^ 0 for ж ^ 0, D(x) < 0 for x ^ 0 . 

Choose a c, 0 < с < 1 and define f(x) = [(\x — 0\ — c)+]2. 

Suppose further tha t ocn are chosen in such a way tha t Assumption (4.5) 
holds. Theorem (4.1) says tha t it does so if ocn = an as in Theorem (1.3). Howe
ver Theorems (4.2) and (4.3) show other possibilities of the choice. Having 
observed Yn(oj) we may take estimates V^co) of R dût the points Xn(co) + 

+ i ~~Yn(co) unless F1(co) > V2(oo) > . . . > Vj(co) ^ Vj+1(co) and put осп(со) = 

• a« 
^ 7« ^ .6) If further d = f > * т у - т ^ - ^ , if the errors F< - Я , ( x n + t %• Y Л 

cl к = i (/с ~г 1)1 \ d J 

are continuous identically and independently distributed and independent 

of 3Cn, Yn, then the conditions of Theorem (4.3) hold I with mi; = RI Xw + i ~~- Yn J J, 
00 

which implies tha t Assumption (4.5) is satisfied with С = у к2 j ^ , 
к « 1 

We shall study the behaviour of Xn. Without loss of generality we may 
assume tha t 0 = 0 and, since only limiting properties are of interest and 
cn.-> 0, tha t cn < с for every тг. This assumption together with (1.3.1) implies 
tha t 

ПЛ9Л M , n - Я ( Х и + с п ) - А ( Х п - с п ) / ^ 0 if I ^ - c , 
(7.1.2) M , ( S n ) - — — ^ — 7 \ ^ 0 if X „ ^ c 

and hence tha t — since X>(x) = 2(|ж| — c)+ . sign ж 

(7.13) , D(Xn) M„(f„) ^ 0 

and we may put 

(7.1.4) A , = J / - X>(Z„) МИ(<ГП). 

6) However in practice we choose not an but an = -~ and we need not know the values 

of an — <ian but only the limiting properties of an which are tha t of the sequence a.n. 
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Now we shall show tha t the assumptions of Theorem (5.2) hold. First, (5.2.1) 
a2 

holds with bn = 0 as follows from (7.1.4). (1.2.4) implies (5.2.3) with dn = — , zcn 

en — 0. Concerning (5.2.2) we get by (1.3.2) and since cn < с < 1 

М2/ЗГ \ < ' i^( ^ ~b cn) ti(£n c n ) | ^ 

|Д(ХЯ + c J - i ? ( Z n - Q l H l X j +Д) < 

[JB(XW + Cn) — jR(Xw —cw) | (^L(lXn| - c j + + i l + Д ) < 

^~Bl + A^ß- 1ВД. + Cn) - Щхп - O l . 
However |Д(ХП + cn) — B(Xn — cn)\ is less than or equal to 4A + 2B or 
(\Xn\ - cw)+ |Д(ХП + cn) - E(Xn ~ cn)\ if (\Xn\ - cn)+ ^ 1 or ^ 1 respecti
vely. Hence 

М«<*„) *±Bl+ ^±* Bl + (А + ВЩА + 2В) 

and (5.2.3) is satisfied with en = and dn = - — — — Ц ~ — - ; both 
Cn C* 

(5.2.2) and (5.2.3) are satisfied with en = 2AJlA> d = И + Д) (24 + Д ) + g « ^ 

Concerning (5.2.4), the requirement ^an = + oo is contained in (1.3.3), 

/anbn = 0 since 6W = 0, / a\àn < + oo since V -— < + oo by (1.3.3). 

From the last inequality it follows tha t j - ^ l -> 0; hence — -> 0, too, 
\ C n I Cn 

lim anen = 0 and (5.2.4) holds. 

Since B\ = \D(Xn)\ \Hn{Xn)\, where Hn(Xn) = B(Xn + c J ~ R{X" ~ c"> 

and inf |2)(#)| > 0 for every e > 0, we deduce from Theorem (5.2) tha t 
\x\ > C + £ 

there exists a set 42(c) such tha t 42(c) с 42, P(Q(c)) = 1 and tha t for every 
со £ 42(c) 
(7.1.5) lim (|Хл(со)| — c) + exists and (equals zero or Nn (Xn (со)) -> 0) . 
Since с was an arbitrary positive number (7.1.5) holds for every со е Q0 = 

д-tö and every с > 0, which implies tha t 

(7.1.6) lim X^(co) exists and (equals zero or Nn (Хте (coj) -> 0) 

for every со e 420, where P(420) = 1. Obviously, if (1.3.1) holds, then lim Хте(со) = 
= 0 for every со e Q0. 
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(7.2) Suppose we again seek for the maximum of a non-negative function 

B, defined on El9 bu t now we define Yn to be —— sign (Y+ — Y~), where Y„ 
2cn 

and Y~ are estimates of B(Xn -f- cn) and B(Xn — cn) respectively. Suppose 
tha t as in Theorem (1.3) E^ Yn = M„(fn) = Hn(Xn) is a function of Xn only 
and suppose (instead of (1.3.1) or (7.1.1)) tha t 
(7.2.1) Ып(х) ^ Oiorx < в - сП9 Ып(х) ^ 0 for я > & + cn . 

The conditions (1.3.2) and (1.3.4) will be omitted. Further we suppose tha t 
(1.3.3) holds and tha t ocn satisfies Assumption (4.5) with f(x) = [(\x — &\ — 
— c)+]2 for every 0 < с < 1. 

Under these conditions we shall s tudy the behaviour of Xn. As in (7.1) we 
suppose tha t O = 0, cn < с for every n. According to (7.2.1) Mn(3£n) D(Xn) 
is non-positive, so tha t (5.2.1) holds with bn = 0 and Bn = ]/— Ып(Хп) D(Xn). 

Since \Yn\ ^ —, we have (5.2.2) and (5.2.3) with dn = —, en = 0. (5.2.4) 

follows easily from (1.3.3) and from the relations en — 0, bn = 0, dw — —. 

Since / satisfies Assumption (2.1), we get from Theorem (5.2), the conditions 
of which we have already verified, tha t there exists a Q(c) с Q such tha t 

P(Q(c)) = 1 and tha t for every со in Q(c) (7.1.5) holds. Put t ing Q0 = П ß ( т ) , 

we get tha t (7.1.6) holds for every со e i20 and tha t P(Q0) = 1. 

If instead of (7.2.1) the following stronger condition 

inf (Nn(x); тг = 1, 2, . . . , x e ( — w, — c,n + 0)} > 0 , 
(7.2.7) 

sup {Nn(x); и = 1, 2, . . . , x e ( 0 + cn, n)} < 0 

is satisfied, then obviously Xn —.> 0. 

8. Multidimensional case. (8.1) Suppose tha t B, Yn, an, cn satisfy the 
conditions of Theorem (1.4) with the exception of (1.4.1) and tha t ocn satisfies 
Assumption (4.5) with / = B. (By Theorem (4.1) the last condition is satisfied 
if the ocn are chosen as in Theorem (1.4); it is also satisfied if the ocn are deter
mined in the way described in Theorem (4.2) resp. (4.3) — see also (7.1)). 
Under these conditions we shall study the behaviour of Xn. 

From (1.4.4) it follows by Taylor's Theorem tha t 

МИ(ЗГ„) = - DR(Xn) - | D2R | * ( X j ) , 

where ^ « ( I J e ( I ^ ' 1 , 1 ^ ! + cn). According to (1.4.2) the assumptions of 

Theorem (5.4) hold with Hn(3>n) = 1, hn = Kcn, 0n(3?n) = - ^ * g ^ Z " ) ) , 
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gn-±= 1,-d *= 0. Thus (5.2.1) holds for Bn - | |D(ZJ | | , bn = Kcn, K2^0. 
Further J|Mn(arn)|| = | |D(XJ| |2 + 2hn <D(XJ , 0n(<FJ> + А» ||вя(ЛГя)|| ^ Б 2 + 
+ 2АПБП + A2 fg (1 + 2hn) Bl + 2kn + hi whence it follows tha t (5.2.2) 

holds with en = 1 + 2Kcn, dn = 2iTcn -f- 2if2c2 + — ; from (1.4.5) it follows 
cn 

t ha t (5.2.3) holds with these cn, dni too. 
Concerning (5.2.4): the condition ^an = + oo is contained in (1.4.3); 

^anbn < + oo is satisfied since by (1.4.3) ^ancn < + oo and bn = Üfcw; 
1 ^2 

^andn < + oo follows from the relations (see (1.4.3)) cn -> 0, 2 "T "< + °°> 
a 2 2(T2 

which imply dn = 2Kcn + 2i£2c2 + — < —— for large n. The relations lim bn = 

a2 

= lim anew = 0 follow from the assumptions ^ancn < + oo, 2 *т < + °°> 

<;n ~> 0 which imply an -> 0 and from the relations bn = 7£cw, en = 1 + 2i£cw. 
Obviously / satisfies Assumption (2.1) and by Theorem (5.2) there exists a set 
D0 с Ü with probability one such tha t for every со e Q0 lim B(Xn(a))) exists 
and belongs to the set 

В {x; DB(x) = 0} U {a; Xt € X, \\х€\\ ~> + oo, B(xt) -> a, DBfa) -> 0} . 

For the interpretation of this result see Kote (5.3). 
Now we shall s tudy the modification of the choice of Yn, analogous to those 

investigated in sections (6.2) and (7.2). There, under some conditions on the 
observations of function considered, the modification enabled us to omit-
conditions (1.2.2) and (1.3.2), respectively. Here we shall give some conditions 
on Yn sufficient to ensure tha t the convergence will not break down (Theorem 
(8.4)) and tha t even under some other conditions the condition (1.4.2) can 
be weakened (Theorem (8.5)). First we shall state an assumption. 

(8.2) Assumption. G is a distribution function with a bounded continuous 

derivative g, a is a positive bounded function on X, — is bounded and has a 

continuous derivative D —, В is a function on X with a continuous derivative a 
DB. For every principal n, cn is a positive number, Znt+, ZUf__ are random vec
tors, 

(8.2.1) r « > = _ I s i g n ( Z < « / - Z « L ) (i=l,...,q),. 

(8.2.2) P r . l Z t S . l - e l ^ e j ( i = l , . , . , « ) , 

,8.2.3) P^ {Z» s г} _ G (*-j<*;+j;,f>) « = i , . . , , ) , -
Z^+, Z^_ are conditionally (&п) independent, i. e. 
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(8.2.5) РХщ {Z«l <S zu Z%+ 5g z2} = РЖп {ZgV <2 2l} . P ^ {Z% g z2} 
for every zx, z2 e JÊ , i = 1, ..., q 

and either 
(8.2.6) a = 1 
or 

+ 00 

(8.2.7) / w % ) d</ = 0 . 
— 00 

• (8.3) Lemma. Let Assumption (8.2) /k>Ztis. TÄew 

(8.3.1) M«>(#«) = - I [1 - 2r, (X„, c j ] 

(8.3.2) , г<(*,0)-=Л, 
+ 00 

— 00 
+ 00 

J g2(y)ày (8.3.4) 

«nd, if a — 1, 

(8.3.5) 

E-^^V-r 
№R(x) 

a{x) 

- C O 

А Г<(Ж, с) = — #«>JR(a! + czl(i)) I flr(y - Д(ж + cZ|('*>) gr(y - E(x))) dj/ . 
— CO . . : : ' ' 

Proof. As follows from the definition of Yn, (8.3.1) will be satisfied if 

(8.3.6) r{(ZM cn) = Pa-.(ZW+ - Я<?_ ^ 0) . 

From (8.2.2) to (8.2.5) it follows that 

P*-(Z"'+ - z - - z ) = J G\—ЩГ+ьЩ—)• àG\ o{xn) )• 
— 00 

whence, substituting z = 0, — y = t, 

(8.3.7) r<(#, с) = I G т-^-—,,,u dG ,~v— 
A ; J \ CT(X + c4<»>) / \ <г(ж) / 

— 00 

which is equivalent to (8.3.3). 
The relation (8.3.2) follows from the fact that r(x, 0) equals P {Fx — V2 5£ 

^ 0} for two independent continuous and identically distributed (with distri-
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( iv _ B(x)\ 
r-т 1, random variables Fi, V9. Differentiating the 

a(x) ) ' B 

integrand in (8.3.3) gives 
ly - R(x + cJ<0)\ / у - Д ( х ) \ Г Д(«Д(ж + cA<») 

9 \ a(x + cA^) ) 9 \ ф) J l~ä{x + cAW) ' + 

+ [ , _ ^ + c^ ) ] Z )<«___L__ )] ; 

from Assumption (8.2) we deduce easily, tha t this expression has for every 
given x € X and с in every finite interval (cl9 c2) a integrable majorante. Thus 
we may differentiate under the sign of the integral in (8.3.3). If a = 1, we 

have D<*> - = 0 and (8.3.5) holds. If с = 0, then a 
+ 00 

àrt(x, с) I №Щх) f ly-E(x)\ 
dc / с о cHx) J УУ a(x) J У 

- oo 

+ 00 

a(x) J a(x) 9 \ a(x) J ^ ~ 

DWRjx) 
a(x) 

+ СО Н-00 

J g*(y) dy ~ a(x) 2X0 - L J wi(y) dy . 

Hence the relation (8.3.4) follows either by (8.2.6) or (8.2.7) and the proof is 
accomplished. 

(8.4) Theorem. Let f = В satisfy Assumptions (2.1) and (4.5), let the random 
variables Yn satisfy Assumption (8.2) with a = 1, let the positive numbers an, cn 

satisfy the relations 

(8.4.1) ^an = + oc, ^anc* < + GO, J J < + GO> limcn = °7) 

TAew /or almost all OJ lim R(Xn{œ)) exists and belongs to the set A = Аг и ^42> 

^ = i? {x; Di?x = 0} , 
A2 = {a; a € El9 xi e X, R(x{) -> a, | |^ | | -> + oo} . 

P roof . By the Mean Value Theorem we get 

H « W = - 1 + Ä r, (z„, с.) = 

~ h+1 [r,(Xn'0)+Си ж г Д Х п ' 0 i ( X J ) ] 
7) This is a rather weaker condition than (1.4.3). 
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with 0 < 0i(Xn) < cn, since by Lemma (8.3) the derivative of г{(х, с) exists. 

However by (8.3.2) гг(Хп, 0) = - and thus according to (8.3.5) 

(8.4.2) M«\arn) = - №R(Xn + в<(Хп) AW) щ{Хп) , 

where 
+ 00 

(8.4.3) * Д „ ) = / g\y - B(Xn + 0t(Xn) ЛЩ . g(y - R(Xn)) d ^ O . 
— 00 

According to (8.4.2) М«\Жп) D&B(Xn) is non-positive if DMR(x) * 0 
for every x e (Xn, Xn-\-cnAV)). In the opposite case, since \\D2R\\ < 2Kr 

\DMR{x)\< 2Kcn for every x € (Xn, Xn + cnA&). Thus 

М2>(ЛГЯ) DWR(Xn) < 4К*£х<(Хп) . 

By Assumtion (8.3) g is bounded. Hence и(Хп) is also bounded and we get 

(8.4.4) - <Mn(#n), D ( X J > <-Bl + c2
nK2 , 

with a suitable constant if 2 and with 
(8.4.5) Bl = - (<МЯ(<ГЯ), D ( X J » _ . 

Now we shall apply Theorem (5.2). (8.4.4) shows tha t (5.2.1) is satisfied 
with bn = с я . From the definition of Г п it follows tha t both (5.2.2) and (5.2.3) 

q2 

are satisfied with en = 0, cln = — . Thus the condition (5.2.4) can be rewritten 

v x- V a 2 

as 2,an = + °°> Z a n c n < + °°» ^~~f < + °°> n m cn = 0 a n ( i these relations 
are assumed in (8.4.1). Thus all conditions of Theorem (5.2) are satisfied and 
thus for almost all со in ü lim R(Xn(co)) exists and Bn.(co) -> 0, i. е. (МпД^пДсо)), 
Z)(Xn/(a>))>_ -> 0 for a sequence of natural numbers ?г,-. 

However the positive part of <Mn.(#*n (со)), D(Xn.(co))} converges to zero 
by (8.4.4), too and 

<Ми.(^п.(ш)), D(Xn.(co))> -> 0. Thus for every i = 1, 2, . . . , g 

D^R{Xnj(co)) D«)R(Xnj(co) + &{(Хп(со))А{) xt(Xn(o>)) -> 0 . 

Thus there exist #,-, x\ e X, such tha t \xi — a^|' -> 0 and tha t R(xj) -> a = 
- lim S(Xw(a>)), 

+ 00 

[ Д Ю В Д DWÄ(«;)] / g(y - B(x't)) g(y - B(x,)) dy->0. 
— oo 

Since from Assumption (2.1) it follows tha t D^)R is uniformly continuous, 
the last relation is satisfied only if 

DiORfa) -> 0 or fg(y- Rix])) g(y - R(Xj)) dy -> 0 . 
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Now if the sequence |ja?y|| is not bounded, it is easy to see (by taking such 
a subsequence xn. t ha t \\xn,\\ ~> + oo) tha t a e A2. If \\х^\\ < M for some M, 
then from the continuity of DR there follows the uniform continuity of R 
in the sphere {x; \\x\\ < 2M} and iï(a^) — JS(^) -> 0. By boundedness and 
continuity of ^ and i£ we get 

+ 00 

, / g(y - *(*i)> ?(y - Д(»д dt/ = 
- 00 

+ 00 +00 

= / <7(2/ - (R(*'i) - - ß ( ^ ) ) ff(y) % - * / !72M dy > 0 . ....... 
- 00 - 00 

Thus if a non € A2, then D^R(Xj) -> 0 and there exists a subsequence xn„ 
•converging to a point x e X such tha t we get lim R(Xn(œ)) = lim i?(#n ) = 
= JB(#) € Аг since DR(x) = lim DR(xn.) = Ö; the proof is finished. 

R e m a r k . If |-B(#/)l.-?r + oo. as soon as | |^| | -> + oo then^42 = 0. If Theorem 
(5.5) can be applied, we get sup Хте(о>) < + oo with probability one and the 
sequence x5 in the proof of the preceding sequence can be supposed to be 
bounded, whence again we get lim R(Xn(co)) e Аг with probability one. 

(8.5) Theorem. Suppose that R is a function ou X with a second derivative. Let 
Q be a function defined on Ег with a derivative q satisfying 

(8.5.1) inf Q'(X) > 0 for every bounded set А cEl9 
xeA 

suppose that Assumptions (8.2)^ (2.1) and (4.5) are satisfied with f = Q(R) and 
with 

(8.5.2) 2 a n = + oo, ^ancn < + oo, ^ ~z < + °°> cn ~> 0 . 

Suppose that for every x e X there exists a function tpx defined on Ег and a po
sitive number c(x) such that for every с e (0, c(x)), y e Exwe have 

d?_ iy - R(x + çAW)\ 
de2 \ a(x +cAW) J ^ <Рх(У) 8.5.3) 

<тй for every x € X 
+ 00 

(8.5.4) / q>Jy) g(y) dy< + co. 
- oo 

Finally suppose that there exist such positive constants K2, у that 

(8.5.5) 

-t- ou 

f/1>/ u TV n D / ч Г d 2 a(y — R(x + cA(i)î\ l У ~ R(x) \ л <к2 

for every x e X, с e (0, 7). 
ТАетг /or almost all со lim i2(Xw(co)) existe (possibly infinite) und belongs to 

П-»00 

£Äe set A = Аг и А2 и ^43, wAere 

<8.5.6) ^ x '= Я({#; £>£(#) = 0}) 
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•(8.5.7) Аг = {a; xt e X, \\х,\\ -> + oo, Ä(^ ) -> a € El9 DR(xt) -> 0} 

<8.5.8) Az - {a; s, в X, \\Xi\\ -> + oo, | В Д | -> + oo} . 

/ / P {sup Xn(co) < + oo} = l8) then P {lim B(Xn(co)) e Аг} = 1 . 
R e m a r k . The meaning of conditions (8.5.3) and (8.5.4) is clear: they 

ensure the possibility of differentiating twice under the sign of integral in 

(8.3.3). I t can be easy seen tha t they will be satisfied if e. g. R and - have 

continuous second derivatives and if G has a bounded second derivative. 
If we use Theorem (5.2), then the function /, which can be said to measure 

the success of approximation, must satisfy Assumtion (2.1). One way of 
choosing / is to put f = R, as we have done in section (8.1); then we must 
require tha t R is upper bounded and has a bounded second derivative. 
These last conditions can be weakened by the introduction of an increasing 
function o. 

If we put for example 
/ ey f or y < 0 , 

Q(V) = ( 
x 2e — e~y for у > 0 

then Assumption (2.1) is satisfied for / = Q(R) if R is a polynomial of any 
degreee. 

Condition (8.5.5) will be satisfied, too, for a large class of functions R, 
for which \\DR(Xi)\\ -> + oo or ||D2i2(^)|| -> oo implies |1?(#Д| -> oo and for 
я, suitable q. Indeed, if for simplicity we assume a = 1, the condition (8.5.5) can 
be written as 

+ 00 

.x € X, с e (0, у), г = 1, 2, .. ;, q => | / {g'(у - R(x + сЛЩ [DR{x + czK*))]2 + 
. ( • - , 0 0 

+ g(y - R(x + czKO) D%»R(x + сЛЩ g{y - R(x) dyg'(R{x)) №Щх)\ < K2 

i. e. 

\Q'(R(X) [№ЩХ + cAM)]2 DMR(x)fg\y - R(x + сАЩ . g(y - R(x)) dy + 

+ Q
f(R(x))D{ü)R(x + сАЩ тЩх) . fg(y ~ R{x + сЛЩ g(y - R(x) dy\ < K2. 

I t is easy to see tha t the last inequality will be satisfied again if g' is bounded, 
g defined as above and if R is a polynomial, K2 and y a suitable positive number. 

P roof . Since Assumption (8.2) is satisfied, we may use Lemma (8.3). (8.5.3) 
ensures tha t we may integrate twice under the sign of integration in (8.3.3) 
and according to (8.3.1), (8.3.2) and (8.3.4) we get by Taylor's Theorem 

(8.5.9) " М я (# я ) = -h(Xn)DR(Xn) -cnê'n{Xnyt 

8) See Theorem (5.5). 
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where 
1- OU 

(8.5.10) Цх) = ~ j д*(у) dy 
- 00 

and 
-I CO 

(8.5.11) 0(..(ХЯ)__ j _ö^_____J . ^__^ j d y 
— 00 

with 0 < с < cn. 

Now since / = Ç(JB) we have 

(8.5.12) D(x) = Q{R{X)) DR{X) 

and thus according to (8.5.9) and (8.5.5; for sufficiently large w 

<МЯ(ЯГЯ), Z)(Xn)> = - o'(R(Xn)) h(Xn) \\DB(Xn)\\* - cnQ'(R(Xn)) < D{RyXn)) p 

, &n(Xn) > rg - е ' д а » ) ) Ä(ZW) ||DÄ(zn)||* + сяя 
for a suitable constant i£ so tha t (5.2.1) is satisfied with 

(8.5.13) B% = Я«(ХЯ) = e ' (B(Z n ) ) Ä(Xn) ||2)Л(ХЯ)||» , Ъп = cw . 
с/2 

Clearly both (5.2.2) and (5.2.3) are satisfied with en = 0, dn = ~, so tha t 

(5.2.4) follows from (8.5.2) and all the assumption of Theorem (5.2) are satis
fied. Hence for almost all eo e Q lim ^Ä(Xn(a>))) exists and belongs to the set 
defined in (5.2.5). Since q is increasing, lim R(Xn(co)) also exists, however is 
not necessarily finite. If the sequence Xn(co) is bounded then there exists a 
subsequence nt such tha t for xi = XWi(<x>) we have xi -> x eX, В{х{) -> i2(#), 
_B2.(co) __ ^ ;(^(хг)) Д(а^) ||2)2?(жг.)||2->0. However the sequence 2?(#г-) is bounded, 
a is bounded and by (8.5.1) and (8.5.10) we get DR(xi) -> 0. Since DR(xi) -> 
-> DR(x), lim J8(Zn(o>)) € A -

If Xn(co) is not bounded but R(Xn(co)) is so, then again from Вп.(со) -> О' 
it follows tha t DR(Xm(co)) -> 0 and lim jß(Xw(co)) e ̂ 42. H neither Xn(œ) 
nor i?(Xn(co)) are bounded then lim R(Xn(co)) e ^43. 

9. Concluding Remarks. (9.1) O t h e r d e f i n i t i o n s of Yn. To observe Yn 

considered in the two last sections it suffices to take estimates of R(x) a t the 
points 

Xn(co), Xn(œ) + cnA<*\ i=l,...,q, 

i. e. to take q + 1 observations of random variables. J e r o m e S a c k s [16] 
points out tha t this definition of Yn leads to a systematical bias of Xn+1 — 
considered as an estimate of 0 in Theorem (1.4) — and propose to estimate 
R(x) at the 2q points Xn ± cnAW. However since this bias is known, an esti
mate of 0 can be obtained without increasing the number of observations. 
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On the other hand there may be many other possibilities of the choice of 
Yn. For example if q = 3 we may use a Latin square 2 . 2 = q + 1, observe 
t h e estimates Fz3- of i?(X0) , where 

^13 

X$ - cnAm for » = 1 , = / Z « - c/l<»> for 7 = 1 , 

• Z ^ ' + C J W for • = 2 , " 4 Z ( „ 2 ) + cnAm for j = 2 , 

X<,3) — cnZl(3> for t = / , 

X<?> + cnZi<3> for » Ф ? 
•define J5n by 

^ = ( F u - F „ ) + (F12 - F22) , Z<„2> = ( 7 U - F12) + (F21 - F 2 2 ) , 

Z$> = ( F u + F22) - ( F „ + F n ) 

and put Fw = —- Zn (as an alogue to the definition consideied in Sec. 
4:Cn 

(8.1)) or Y™ — -—sign jSJJ* (as analogue to the definition in Assumption 

{8.2)). I t is easy to see tha t this definition of Yn leads to no complications in 
proving the convergence properties of Xn under suitable conditions. 

(9.2) I n c r e a s i n g t h e n u m b e r of o b s e r v a t i o n s b y i n c r e a s i n g t h e di
m e n s i o n of X. The question often arising in practice if the process studies does 
or does not depend on a certain factor has the following abstract formulation. Gi
ven a function/ on Eq does there exist a / defined on Еа_г such tha t f(x) = f(x) 
for every xeEq, x e Eq_l9 xW — #(*) for i = 1, . . . , q — 1 ? In the search 
for the minimum of / an erroneous positive answer to the preceding question 
results in reducing the number of observations but also in approximating 
the restricted inf f(x), where a is a number, instead of approximating inf f(x). 

X(Q) = a 

This error (of the first kind, say) can be of an essential character. The error 
of the second kind in answering our question in the negative leads to an 
increase in the number of observations. If the increase is large (and this is 
so for example if factorial designs are used with к levels for the q-th factor; 
then we need к times more observations), then the experimenter trying to 
avoid the Scylla of the perhaps unnecessary and large increase in the number 
of observations easily fails to avoid the Charybda and neglects practically signi
ficant factors. On t h e other hand a small increase diminishes this risk. And 
this is a further advantage of approximation methods desribed in Theorems 
(8.4) and (8.5), since there consideration of the function / defined on Eq in
stead of / defined on Eq_x (if f{x) = f(x) as above) results in an increase in 

( 7 - 4 - 1 ^ 
the number of observations at most by a factor ± ' . Indeed if Xn and Xn 
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denote the approximation sequence for / and / respectively, if the estimates-
are assumed to be equal in both processes as soon as the estimated quantities 
are identical, if further 

(9.2.1) Zg> = Zg> for i - 1, . . . , q - 1 

and for n = ' 1, then it is easy to see tha t (9.2.1) holds for every n== 1, 2 , . . . „ 
Hence our assertions follow from the fact tha t for the determination of the 

values of Yn and Yn we need q -f- 1 and q observations respectively and the 
number of observations for determining the value of ocn is identical in both 
cases. 

(9.3.) U n s o l v e d q u e s t i o n s . From a host of them we mention especially 
two. The first was pointed already in Note (5.3): If in Theorem (5.5) В = D, 
under what non-trivial conditions the assertion P {lim f(Xn) e / {x; D(x) = 0}} 
can be strengthened to P {lim f(Xn) e A}, where A is the set of local minima 
of /? SecondJy how to generalize the consideration in a non-trivial way to 
functions / defined on a set X с EQ rather than on X = EQ, especially if / 
may acquire its (possibly unique) minimum at the boundary of X? Although 
we feel the great importance of the two problems we have not succeeded in 
solving them. ' 
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, Р е з ю м е 

СТОХАСТИЧЕСКИЕ МЕТОДЫ П Р И Б Л И Ж Е Н И Я 

ВАЦЛАВ ФАБИАН (Vaclav Fabian), Прага 

Использование обычных схем Хп+1 = Хп + (xnYn может оказаться прак
тически невыгодным в случаях, когда \EXnYn\ велико для Хп близких 
и мало для Хп далеких от искомого решения. Этой невыгоды будут лишены 
схемы типа Х п + 1 — Хп + осп sign Yn. 

Обычное предположение, что осп — числа, может быть невыгодным в &-мер-
ном случае при большом к, когда для определения направления Yn необ
ходимо произвести по меньшей мере к -\~ 1 опытов. Так как неизвестна 
оптимальная длина шага в определенном таким образом направлении, 
представляется неэкономичным пробовать лишь одну длину, предписанную 
числом осп. Определив направление Yn, можно поступать, например, так 
(при разыскивании минимума функции В), что оцениваем последовательно 
В(Хп + anYn), В(Хп + 2anYn), . . . при помощи оценок Vlt V2r . . . до тех пор, 
пока не будет V1 > V2 > . . . > V,г ̂  Vi+1, а затем можно положить осп = jan. 

При довольно общих условиях, наложенных на оценки Vu обычные 
аппроксимационные схемы сохраняют свою сходимость с вероятностью 
I при второй из указанных модификаций. Первая модификация тарсже 
требует некоторого усиления условий, касающихся оценок функциональ
ных значений, но зато позволяет ослабить условия, наложенные на ре
грессивные функции. , • . , * , . 

Свойства сходимости как модифицированных, так и исходных аппро-
ксимационных схем, исследовались при более общих предположениях 
относительно регрессивных функций, чем, например, условия Й. Р. Блюма 
[2]. В случае отказа от условия (1.4.1) последовательность В(Хп) сходится 
и ведет себя, грубо говоря, так, как будто бы Хп сходились к точке, в кото
рой первая производная В равна нулю. , , 
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