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Yexocosaukuii MaTeMaTHueckHii sxypuasa T. 12 (87) 1962, Ilpara

ON MATRICES WITH NON-POSITIVE OFF-DIAGONAL ELEMENTS
AND POSITIVE PRINCIPAL MINORS

MirosLAv FIEDLER and VLASTIMIL PtAk, Praha
(Received July 28, 1960)

The authors study a class of matrices which occur frequently in applica-
tions to convergence properties of iteration processes in linear algebra and
spectral theory of matrices.

1. INTRODUCTION

In many investigations concerning the convergence of iteration processes in linear
algebra and spectral properties of matrices the idea of considering matrices of the
type

ayy, =gy, —dys, ...
—dy1, Gy, —d,s, ...
—d3y, —dzy, dss, ...

with nonnegative a,, suggests itself in quite a natural way. Matrices of this type have
been extensively studied especially by A. OstrROWsKI, K. FAN, D. M. KOTELJANSKLJ
and others.

It appears that the matrices investigated here play an important role in regularity
criteria and estimates for spectra of matrices. It is our opinion that the theorems of
the present paper give a deeper insight into some earlier results on regularity condi-
tions as well as a possibility of obtaining new results; this will form the subject of
a further paper. -

During the authors’ work in the past five years many results appeared essentially
as consequences of theorems on matrices of this type. It appears useful to collect
these theorems in a separate paper which is intended as a basis for further applic-
ations. In this manner the authors intend to avoid repetitions in further communic-
ions and hope to present a unified account of the properties of this particular class
of matrices. In the mean time, some of these properties have been obtained inde-
pendently by other authors. '

The paper is divided into seven sections, the first being introductory. The second
explains the terminology and notation. In the third section, we investigate the pro-
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perties of matrices whose principal minors are positive. Section four is devoted to the
investigation of properties of a class of matrices called K.") Theorem (4,2) which shows
the equivalence of several properties used to define the class K is essentially known
and is included only for the sake of completeness. In section five, we study a wider
class of matrices which may be considered as the closure of K. In the sixth section
we collect several criteria for a matrix to belong to K. These criteria have important
applications in the study of regions in the complex plane which contain the spectrum
of a given matrix. In section seven we prove some general inequalities for matrices
of class K. These inequalities contain as special cases some known properties of
minors.

2. NOTATION

In the whole paper n will be a fixed positive integer. The set of indices 1,2, ..., n
will be denoted by N. A (square) matrix is a real function on P x P, where P is
some index set. If 4 is a matrix, we shall denote by a;, the value of A at the point
(i, k). The transpose of a matrix A will be denoted by A”. The determinant of a ma-
trix A will be denoted by det A. If M = N and if 4 is a matrix on N x N, we denote
by A(M) the partial function of 4 on M x M. We shall call it the principal subma-
trix of A corresponding to M. The number det A(M) is called the principal minor
of A corresponding to M.

A matrix A is said to be reducible if there exists a nonvoid P = N, P % N, such
that a; = 0 for ie P and ke N — P. A matrix is irreducible if it is not reducible.
A matrix A is said to be nonnegative or 4 = 0if ay = Oforeachi,keN.Ifa, >0
for each i, k € N we say that A is positive or A> 0. A vector is a real function on N.
We write x = 0 if x; = 0 for each ie N and x > 0 if x; > 0 for each ie N. If A
and B are two matrices we shall write B = A for B — A = 0. We shall frequently
use the following important theorem due to Perron and Frobenius.

(2,1) Let A be a nonnegative matrix. Then there exists a proper value p(A) of A,
the “Perron root of A”, such that p(A) = 0 and |A| £ p(A) for every proper value A
of A. If 0 £ A £ B then p(A) < p(B). Moreover, if A is irreducible, the Perron
root p(A) is positive, simple and the corresponding proper vector may be chosen
positive.

Let 4 be a matrix. The “spectral radius” o(A) of A is defined as the maximum
of the moduli || of all proper values A of A. According to the Perron-Frobenius
theorem, we have o(4) = p(A) for nonnegative matrices.

(2,2) Definition. A matrix W is said to have dominant principal diagonal if
[wi| > Y |wa for each ieN.
K*i

(2.3) If Wis a matrix with dominant principal diagonal, then o(E — H™'W) < 1
where H is the diagonal of W.

1) These matrices are sometimes called M-matrices.
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Proof. Let A be a proper value of E — H~'W. Then there exists a vector x =% 0
such that Ax =x — H 'Wx. Take ieN such that |x;| = max [x;| > 0.
JjeN

Then

Ax; =Y '(w,-j/w,-,‘) x; whence |1 |x| = (3 |wii]/|ws]) max [x;| < x|
Jj*i J¥i JjeN

It follows that ]l! <1 and since A was an arbitrary proper value of E — H™'W,
we have o(E — H™'W) < 1.

In the main text, we introduce several classes of matrices: P, Z, K and K,. Their
definitions are contained in (3.4), (4,1), (4,4) and (5.2) respectively.

3. POSITIVITY OF PRINCIPAL MINORS

This section has an auxiliary character. We prove two equivalences which show
that some of the properties investigated later depend on properties of principal
minors only.

(3,1) The following two properties of a matrix A are equivalent:
1° the sequence of principal minors A(M}) is positive (here M; denotes the set
consisting of the indices 1,2, ..., i);

2° there exists a lower triangular matrix T, and an upper triangular matrix T,
both with positive diagonal elements such that A = T,T,.

Proof. The step from 1° to 2° will proceed by induction. The case n = 1 being
trivial, let n > 1 and suppose that this implication holds for all matrices of order

smaller than n. Let
A a
A — n—1>»
(b ] ann)

be a matrix of order n fulfilling condition 1°. Then A,_{ = T,T, where 7‘1(7"2) is
a lower (upper) triangular matrix with positive diagonal elements. From the relation

dw — bA 'y a = det Afdet 4,_, > 0

it follows that the matrices

o~ = g1
Tl = Ti—l’ 0 5 TZ = T2 Tl ¢ -1
bTZ ,» 1 0 > Qpn — bAn—l a

fulfil condition 2°.

The other implication is obvious since the principal minors det A(M,) are equal
to the product of the first i diagonal elements of T, and T,.

The following lemma (3,2) will not be used until section four.

(3,2) Let a matrix A = (a;;), i, j € N, fulfil the conditions a;; < 0fori+j,i,jeN,
and let A = T\T, where T\(T,) is a lower (upper) triangular matrix with posi-
tive diagonal elements. Then the off-diagonal elements of both T, and T, are

non-positive.
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Proof. Let T, = (r;;), T, = (s;;), so that r;; =0 for i <j, s;; =0 for i > j,
ri > 0,5 > 0(i,j € N). We shall prove the inequalities r;; < 0, s;; < 0 (i # j) by
induction with respect to i + j. If i + j = 3, the inequalities r,; < 0 and 5,, <0
follow from a;, = ryys;, and a,; = r,ys;;. Let i + j > 3, i & j, and suppose the
inequalities ry; < 0 and s,; < 0 (k # [) valid if k + [ < i + j. Then, if i < j, in the
relation

a;j = rys;; + Z T ikSkj
k<i
we have a;; 0, ) rys,; = 0 since ry, £ 0, 5,; < 0 according to i + k < i + j,
k<i

k +j < i+ j. Thus s;; £ 0. Analogously, for i > j the inequality r;; < 0 can be
proved.

(3,3) Theorem. The following four properties of a matrix are equivalent:

1° All principal minors of A are positive.

2° To every vector x + 0 there exists an index k such that x,y, > 0 where y = Ax.

3° To every vector x =* 0 there exists a diagonal matrix D, with positive diagonal
elements such that the scalar product (4x, D,x) > 0.

4° To every vector x =+ O- there exists a diagonal matrix H, = 0 such that
(Ax, Hx) > 0.

5° Every real proper value of A as well as of each principal minor of A is po-
sitive.

Proof. To prove that 1° implies 2°, choose an arbitrary non-zero vector x and
suppose that x;y; < 0foreach i e N where y = Ax. Let M be the set of those indices i,
for which x; # 0. Obviously M = 0. If A(M) is the principal submatrix with rows and
columns of M, x(M) the vector whose coordinates have indices of M and coincide
with coordinates of x, then the coordinates z; of the vector z = A(M) x(M) coincide
with the coordinates y; for i € M. Thus, there exists a diagonal matrix U = 0 (over
M x M) such that z = —Ux(M), i.e. (4(M) + U)x(M) = 0. Consequently the
matrix 4(M) + U is singular. But all principal minors of A(M) being positive, the
same holds for A(M) + U since U is diagonal non-negative. This contradiction proves
the above implication.

To prove that 2° implies 3°, let x + O be a vector, y = Ax and k the index for
which x,y, > 0. There exists a number ¢ > 0 such that

Xy + ey x;y;>0.
Jj¥k

It is sufficient to take as D, the diagonal matrix with dj; = 1 and d;; = ¢ for j + k.

Since 4° follows from 3° immediately, we shall prove that 4° implies 5°. Thus,
let 0 £ M < N and let A be a real proper value of 4(M) with the proper vector x(M).
Denote by x the vector the coordinates x; of which coincide with those of x(M) for
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i€ M and are zero for i € M. According to 4° there exists a diagonal matrix H.=0
such that (4x, H,x) > 0. But obviously
(4x, Hox) = (A(M) x(M), H(M)x(M)) =
= Ax(M), H (M) x(M)) = A(x, H,x).
Since (x, H,x) = 0, we have 1 > 0.

The proof of the theorem will be complete if we prove that 5° implies 1°. But this
follows easily from the fact that the determinant of a matrix A is equal the product
of all proper values of 4 and that the product of the non-real proper values of a real
matrix is positive.

(3,4) Definition. We shall denote by P the class of all matrices fulfilling one of
the conditions of the preceding theorem.

(3,5) Let AeP.If D is a diagonal matrix with positive diagonal elements, then
both DA nad AD belong to P as well.

Proof. This assertion is an easy consequence of condition 1°.

4. MATRICES OF CLASS K

This section contains the definition as well as the main theorems on the class K.

The main theorem (4,3) is essentially known and has been included for the sake of
completeness.

(4,1) Definition. We shall denote by Z the class of all real square matrices whose
off-diagonal elements are all non-positive.

(4,2) Let each real proper value of a matrix A € Z be positive. Let B e Z fulfil the
inequality A < B. Then

1° both A™" and B! exist and A™* = B~! > 0;

2° each real proper value of the matrix B is positive;

3° det B = det A > 0.

Proof. There exists a positive number o such that U = E — ¢B = 0. Then

V=E—06AZE—-0oB=Uz2=0andif p(V) is the Perron-root of ¥, we have
det[(1 — p(V)) E — 6A] = det [V-p(V)E]=0.

According to our assumption, 1 — p(V) >0, ie. 0 < p(V) < 1. Thus, the series
E +V+ V? + ... converges to the matrix (E — V)™! = (64)™", the last matrix
being obviously non-negative. Since 0 < U* < V¥ fork = 1,2,..., E + U + U? +
+ ...converges to (E — U)™! = (oB)~! as well; the inequalities (c4)"' =2 (6B)™' =
= 0, and consequently, 4! > B™! > 0 are fulfilled. Let now « < 0. Then B —
— aE 2 A. According to 1°, B — «E is regular and all real proper values of B are
thus positive. It remains to prove 3°. We shall do that by induction. If the order n
" of Ais 1, everything is obvious. Let n > 1 and suppose that 3° is fulfilled for all pairs
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of k by k matrices satisfying our hypotheses with 1 < k < n. The principal submatrix
A; = A(M) aswellas B, = B(M), M = {1,2, ..., n — 1}, belong to Z and, obviously

A; £ B,. Since the matrix
I- A, 0
0 2 a’l)l

fulfills the inequality 4 < A and 4 e Z, each real proper value of 4, and consequently
of Ay, is positive. Thus, according to the induction hypothesis, det B, > det A, > 0.
From A™!' 2 B™" 2 0 follows (if elements with indices (n, n) are considered)

det A det B
Hence det A > 0, det B > 0 and

0.

v

dethiii-%—detA >detAd > 0.
det 4,

The proof is complete.

(4,3) Theorem. Let A € Z. Then the following conditions are equivalent to each
other:

1° There exists a vector x = 0 such that Ax > 0;

2° there exists a vector x > 0 such that Ax > 0;

3° there exists a diagonal matrix D with positive diagonal elements such that
ADe > 0 (here e is the vector whose all coordinates are 1);

4° there exists a diagonal matrix D with positive diagonal elements such that the
matrix W = AD is a matrix with dominant positive principal diagonal,

5° for each diagonal matrix R such that R = A the inverse R™! exists and
o(R™'(P — A)) < 1, where P is the diagonal of A;

6° if Be Zand B = A, then B™! exists;

7° each real proper value of A is positive;

8% all principal minors of A are positive;

9° there exists a strictly increasing sequence 0 M, «c M, = ...< M, = N
such that the principal minors det A(M,) are positive;

10° there exists a permutation matrix P such that PAP~' may be written in the
form RS where R is a lower triangular matrix with positive diagonal elements
such that R € Z and S is an upper triangular matrix with positive diagonal elements
such that Se Z;

11° the inverse A~1 exists and A~* = 0;

12° the real part of each proper value of A is positive;

13° for each vector x + 0 there exists an index k such that x,y, > 0 for y = Ax.

Proof. Suppose that x = 0 and Ax > 0. Let us denote by e the vector with
coordinates 1, 1, ..., 1. Let & be a positive number. Then x + ee > Oand A(x + ee) =
= Ax + eAe will be positive if ¢ is small enough.
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If x is a positive vector such that Ax > 0, let us denote by D the diagonal matrix
with diagonal elements x;, ..., x,. It follows that D has positive diagonal elements
and ADe = Ax > 0.

Suppose that D is a diagonal matrix with positive diagonal elements such that

We > 0 for W= AD. It follows that w; > — Y w;; for each i. Since 4 € Z and
J¥i
d;; > 0, we have w;; < 0 for i # j. The inequality above may thus be written in the
form w;; > Y ]wij| so that W is a matrix with dominant positive principal diagonal.
JFi

Suppose that D is a diagonal matrix with positive diagonal elements such that the
matrix W= AD fulfills w;; > ) |w,;| for each i. Note first that w;; and, consequently,
J¥i

a;; are positive. It follows from lemma (2,3) that 6(E — H™'W) < 1 where H is the
diagonal of W. If P is the diagonal of 4, we have H = PD and

o(E — P7'4) = o(D"(E — P"'4) D) =

= o(E — D”'P7'4D) = o(E — H'W)<1.

If R is a diagonal matrix such that R — 4 > 0, we have r; = a; > 0 and, accord-
ingly, the matrix R™! exists and R™! £ P!, According to the theorem of Perron-
Frobenius (2,1) we have 6(M) = p(M) for each nonnegative matrix M. The matrix
P — A being nonnegative, we have

o(R™H(P ~ A) = pRI(P — 4) <
SpP7'(P—A)=p(E—-P'4)=0oE-P'4)<1.

Let Be Z and B = A; suppose that A fulfills condition 5°. Let R and P be the
diagonals of B and A respectively. It follows from 5° that R™! exists, has positive
diagonal elements and o(R™'(P — A)) < 1. Since B belongs to Z and B > A, we
have 0 < R — B < P — A. It follows that 0 < R™(R — B) < R™'(P — A). Hence

o(R"Y(R — B)) = p(R™(R — B)) < p(R™}(P — A)) = o(R"(P — 4)) < 1
so that the series E + (E — R™'B) + (E — R™'B)? + ... convérges to the sum
(R™'B)™*; it follows that B! exists.

Suppose that A4 fulfills 6° and let w < 0. Consider the matrix B = 4 — wE.
We have Be Z, B > A so that B~! exists according to 6°. It follows that w is not
a proper value of A.

Suppose that all real proper values of A are positive. Let M = N and let us show
that det A(M) is positive. Define a matrix B in the following manner: b;; = a;; if
both i, je M, b;; = a;; for i non € M and b;; = 0 for the remaining pairs of indices.
Clearly B> A and Be Z. According to theorem (4,2) we have det B > 0 and
every proper value of B is positive. Especially all a;; are positive for i ¢ M. Since det B
equals the'product of det 4(M) and the a;; with i ¢ M, the minor det A(M) is positive
as well. .

The implication 8° to 9° is obvious. The step from 9° to 10° is an immediate con-
sequence of (3,1) and (3,2).
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Suppose that 4 may be written in the form RS where R, S are (lower and upper)
triangular matrices with positive diagonals and R, S e Z. It is easy to see that both R~
and S~ exist and are non negative. Hence A~ ' exists and A~! = S"!R™! > 0.

Suppose that A7 exists and 47" = 0. Put x = 4™ 'e so that x = 0 and Ax =
= e > 0. It follows that 1° is fulfilled.

This completes a cycle of implications connecting the first eleven properties. Pro-
perties 8° and 13° are equivalent according to (3,3). Condition 12° clearly implies 7°.
The proof will be complete if we show that 12° follows from 7°. To see that, suppose
that all real proper values of 4 are positive. Take a positive ¢ large enough that
oE — A = 0. Then [g - 2‘,] < p(oE — A) for each proper value ¢ of A. Further,
there exists a real proper value &, of A4 such that ¢ — &, = p(¢oE — A). According
to our assumption, we have &, > 0 whence |¢ — ¢] < ¢ — &, < ¢ for each proper
value ¢ of A. This completes the proof.

(4,4) Definition. We shall denote by K the class of all matrices fulfilling one of
the conditions of the preceding theorem.

(4,5) Let A € K. Then there exists a positive proper value q(A) of A such that the
real part of any proper value of A is at least q(A).

Proof. There exists a positive ¢ such that 6E — 4 2 0. Put g(4) = o — p(cE — A).
Since A € K, we have g(A4) > 0. Let A be a proper value of A. Then ¢ — 1 is a proper
value of ¢E — A so that

lo — 4| < P(0E — 4) = 6 — g(4)

which proves the theorem.

(4,6) Let AcK, Be Zand B 2 A. Then B e K as well and B possesseg the follow-
ing properties:

I°0SB g4

2°det B = det 4 > 0;

3° A7'B> Eand BA™! = E;

4° the matrix B™'4 as well as AB™! belongs to K and B™'4A < E, AB™! < E;

5° o(E — B™'4) < 1, o(E — AB™Y) < 1;

6° q(B) = q(A).

Proof. Since 4 € K, we have 4 € Z and each real proper value of A4 is positive
by 7° of (4,3). It follows from theorem (4,2) that det B = det A and, further, that B™!
existsand 47! = B~' = 0. By 11° of (4,3) the matrix B belongs to K. Since A™* = 0
and B — 4 2 0, we have A~ '(B — A4) = Osothat A™'B > E. Similarly, BA™" = E.
Since B™' 20 and B— A4 =0, we have B"/(B— 4) = 0 so that B"'4 < E.
Especially B"'A4 € Z. The inverse of B~ A4 exists and is nonnegative since A™!B = 0.
According to 11° of (4,3) the matrix B™'4 belongs to K. The matrix AB™" belongs
to Z since AB™! £ E. The inverse of AB™! is BA™! = E, hence nonnegative, so
that AB™" € K by 11° of (4,3). To prove 5°, note first that E — B"*4 = 0 so that
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o(E — B™'4) = p(E — B™'4) = 1 — p for some proper value u of B~'4. Now u
is real and B™'4 e K. It follows from 7° of (4,3) that u > 0 so that 1 — pu < 1.
Analogously, ¢(E — AB™') < 1. To prove 6°, it is sufficient to show that AE — B
is regular if 1 < g(4). To see that, take a A < g(4). The matrix 4 — AE belongs
to Z and we have « — 4 2 g(A4) — A > 0 of reach real proper value a of 4 so that
A — JEeK by 7° of (4,3). Now B— AE =2 A — AE and B — AEe Z. It follows
from the first part of the present proof that B — AE € K and, consequently, B — AE
is regular.

(4,7) Let AeK. Then g(A) < ay; for each ieN.

Proof. Define a matrix B in the following manrier: b;; = a;;if i = jand b;; = 0
fori = j. It follows that Be Zand B = A. According to the preceding theorem B € K
and ¢(B) = q(A). Clearly q(B) = min a;; and the proof is complete.

4,8) If AeK, let us denote by y(A) the circular region with centre a = max a;
and radius p(aE — A). The set y(A) contains the whole spectrum of A. Especially,
the point q(A) lies on the boundary circle. If M = N then A(M) belongs to K as
well, q(A(M)) = q(A) and y(A(M)) < y(A).

Proof. We have aE — 4 = 0 so that |a — A £ p(aE — A) for each proper
value of 4. Now let M < N. Clearly A(M) e Z; all principal minors of A(M) are
positive whence A(M) € K. Define a matrix B in the following manner: b;; = a;;
fori,jeM ori = jand b;; = O for all other pairs of indices. We have clearly Be Z
and B = 4 so that Be K and ¢(B) = ¢(A) according to the preceding theorem. Now
q(B) is equal to the minimum of g(4(M)) and some a;;. It follows that g(4(M)) =
= ¢(B) Z q(A). Further, the centre of y(4(M)), being the maximum of a;; with i € M,
lies to the left of a. The set y(4(M)) is therefore contained in y(A) and the proof is
complete.

(4,9) Let A€ K and let D be a diagonal matrix with positive diagonal elements.
Then both DA and AD belong to K as well.

Proof. Note that K = Z n P and apply (3,5).
(4,10) Let A = (a;;) €K, let C = (c;;) be a diagonal non-negative matrix such
that c;c;; = a;a;; whenever i % j. Then the matrix B with diagonal elements

of C and off-diagonal elements of A belongs to K.

Proof. The numbers a;; as well as ¢;; being positive, there exist diagonal matri-
ces D, with diagonal elements a;;* and D, with diagonal elements c;;*. According
to (4,9) we have D;AD, = E — U € K, where U = 0. Similarly, D,BD, = E — V
where V = 0. According to our assumption ¥V < U, since

, —_—ﬂ_ < |a"fl = Uu..

! (cici)* — (auay)* !
fori + j. Thus E— VeZ E - V= E — U. From (4,6) it follows that E — Ve K
and according to (4,9) B e K as well. The proof is complete.
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5. MATRICES OF CLASS K,

In this section we introduce another class ot matricés which may be considered as
the closure of class K.

(5,1) The following properties of a matrix A e Z are equivalent:

1° all real proper values of A as well as of all principal submatrices are non-
negative;

2° all principal minors of A are nonnegative;

3° A + ¢E € K whenever ¢ > 0;

4° all real proper values of A are nonnegative.

Proof. The step from 1° to 2° is obvious, each principal minor of A being equal
to the product of all its proper values.

If ail principal minors of 4 are nonnegative, it is to see that all principal minors
of A + ¢E are positive whenever ¢ > 0. It follows from (4.3) that A4 + eEeK.

Suppose now that 4 + ¢E € K for each ¢ > 0. Let A be a real proper value of 4
or some principal submatrix of A. Then A + ¢ is a real proper value of A4 + ¢E or
some principal submatrix of 4 + ¢E. Since A + ¢E € K, we have A + ¢ > 0. This
is true for every ¢ > 0 whence A = 0. The proof will be complete if we show that 4°
implies 3°. But this is an easy consequence of 7° in (4,3).

(5,2) Definition. We denote by K, the set of all matrices which belong to Z
and fulfil one of the conditions of the preceding theorem.
(5,3) The class K is contained in K,.

Proof. Obvious.

(5,4) Theorem. Let A€ Z and suppose that there exists a vector x > O such
that Ax 2 0. Then A e K,.

Proof. If ¢ > 0, then (4 + eE)x = Ax + ex > 0. Thus, 4 + ¢E € K according
to 2° of theorem (4,3). From 3° of theorem (5,1) it follows that 4 € K.

(5,5) Theorem. If A € K, is regular, then A € K.

Proof. Let A be a proper value of A. According toi(5,1) we have 4 = 0. Since
det A # 0, no proper value of A can be zero. Thus all real proper values of A are
positive and A4 € K by 7° of theorem (4,3).

(5,6) Let A €K, be singular of order n and irreducible. Then A has rank n — 1
and there exists a vector y > 0 such that Ay = 0.

Proof. For a suitable ¢ > 0 the matrix cE — A is nonnegative. According to the
theorem of Perron-Frobenius the Perron root p(cE — A) is simple and the proper
vector y corresponding to p(cE — A) may be chosen positive. Since ¢ — p(cE — A)
belongs to the spectrum of A, we have ¢ — p(cE — A4) = 0 by 3° of (5,1) whence
P(cE — A) < c. The matrix A being singular, ¢ is a proper value of cE — A so that
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¢ < p(cE — A). It follows that p(¢E — A) = ¢ so that Ay = 0. Since 0 is a simple
proper value of 4, A is of rank n — 1.

(5,7) Theorem. Let A € K, be irreducible. Then all proper principal minors of A
are positive.

Proof. If A is regular, we have A € K by (5,5) and the conclusion follows from 8°
of (4,3). Thus let A be singular of order n. It is sufficient to consider the case n > 1.
According to (5,6), there exists a vector y > 0 such that Ay = 0. Analogously, there
exists a row-vector z’ > 0 such that z’A = 0. The adjoint matrix B of the singular
matrix A, whose elements are the cofactors A4;, of the elements a;, of 4, is known to
be of the form ¢z'y. Here ¢ + 0, since the rank of Aisn — 1 = 1 by (5,6). If ¢ < 0,
there would exist an ¢ > 0 such that the adjoint matrix B; of 4 + ¢E satisfies B, < 0,
which is a contradiction with 4 + ¢E € K (its principal minors of order n — 1 are
positive). Thus, ¢ > 0 and B > 0.

It follows that all principal minors of order n — 1 of the matrix A are positive.
According to (5,5), all its principal minors of order < n — 1 are positive. The proof
is complete.

(5,8) Let AeK, be irreducible. Then there exists a vector x > 0 such that
Ax = 0.

Proof. If A is regular, it follows from 2° of (4,3). If A4 is singular, it follows from
(5,6).

(5,9) If AeK,, there exists a non-zero vector x = 0 such that Ax = 0.

Proof. If A = 0, the theorem is obvious. If A & 0 thereexistsaset M,0 = M < N
such that A(M) is irreducible and a,, = 0 for pe M and ge N — M. From (5,8),
follows that there exists a vector x(M) > 0 fulfilling the inequality A(M) x(M) = 0.
Thus, the vector x whose coordinates x; are equal to those of x(M) for i e M, and
x; = 0 for j ¢ M, fulfills the condition Ax = 0.

(5,10) Let Ae K. Then A — q(A) E belongs to K, and every singular matrix of
class K, may be obtained in this manner.

Proof. If ¢ > 0, all real proper values of 4 — g(A) E + ¢E are at least ¢ so that
A — q(A) E + ¢E e K. It follows that A — g(A) E € K,. If 4 is singular of class K,
choose a positive o and put B = A + aE. We have Be K and g(B) = o so that 4 =
= B — ¢(B) E.

(5,11) Let AeK, let B> A and Be Z. Then BeK,.

Proof. Follows from (4,6) and 3° of (5,1).

6. SOME CRITERIA FOR MATRICES OF CLASS K

The results of this section have important applications to regularity conditions for
matrices and estimates for spectra of matrices.
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6,1) Let A = (a;)e Z. Let g and g’ be a pair of adjoint norms in E,. Put g, =
= gllaiy| ..., laii-4], 0, @i iv1s oo |as|), and suppose that g; > 0 and a; >0
for each i. Suppose further that there exist numbers v; such that

g'(vy,..sv,) £ 1

and v; 2 gi/a;; for each i. Then AeK,. If g'(vy,...,v,) < 1 or if v; > g;a,; for
each i, the matrix A belongs to K.

Proof. The vector v is positive since g; > 0 and a;; > 0. We have, for each i,
Y lai v. < gi9'(v) < g; < ay; so that 4o > 0. According to (5.4) this is sufficient

s¥i -
for A to be of class K. If g'(v) < 1 we have, since g; > 0, the estimate g,g'(v) <
< ¢i = a;v; so that Av > 0. If v; > g;/ay; for each i, we obtain g,9'(v) < g, < a;v;

whence Av > 0. According to 2° of (4,3) the matrix 4 belongs to K.
(6,2) Let A =(a;;)€Z,a;; 2 0.1f g Z 1, let us denote by g{q) the sum (Y |a,|)?)!/".
k¥i
Further, let g (o0) = max Ia,.,‘|. Let py, ..., p, bereal numbers such that p = min p; =
k¥i

2 1. For each p;, let q; be the conjugate exponent defined by the relation 1/p; +
+ 1/q; = 15 if p; =1, we put g(q;) = g). Let g{q;) > O for each i and suppose
that

1

o=y - <1.

ieN 1 a:: pi\ p/pi
)
(- Gio))

_ 1

i

being positive, consider the vector x > 0 with coordinates x;. Let us show that
Ax > 0. This is sufficient for the validity of the inclusion A4 € K by 2° of (4,3). We

have
Z laikl X = gi(qi) ( Z x{x)llm =< gi(qi) (k;xi)”p =
k¥i i i

k+

Then A belongs to K.

Proof. The numbers

1 1/p 1 1/p

1 —

o | S 944) a; \PO\P/P
Gy T

the number g(q,) being positive. Now 1 + b = (1 + b")"/* for every b > 0 and
r 2 1. This inequality for b = (a;;/g{q;))” and r = p,/p gives

1+ (g_:l(—‘;i)yé (1 +<;§E;—'.))m)pm

= gi(qi) o —
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whence
1 < 1

'”i=1—-ﬁ.
(G ) )

Together with the inequality above, this gives

_Zaikxk<gi(qi) - =
Pr .

a;; 1
T RN iXi
o) (i (o))

gi(qi)

(6,3) Let A= (a;)eZ, a; 2 0. Suppose that, in each row, at least one off-
diagonal element is different from zero. Let p > 1, q = p/(p — 1) and let R be
the set of those i for which a;; < g(1). If R is empty, then A€ K. Let R + 0 and

ii =

let p be the maximum of the numbers
1

Z———l——q—+uqz (g—"(12>q<1.

ek 1 +( a; > ieN=R
gi(P)
Then A € K.

Proof. If R = 0, the theorem tollows from 2° of (4,2). Let R # 0. There exists
a positive number ¢ such that the inequalities

)

as well as u + & < p(a;;/g (1)) for each i e N — R are valid. Put

¢ = ! if ieR

(+Gin))
and & = (u + ¢) (9(1)/a;) if ieN —R.

Note that g(1) > 0 according to our assumption. It follows that the vector x with
coordinates &; is positive. We intend to show that Ax > 0.

= gi(qi)

and the proof is complete.

for ieR.

Suppose that
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If i € R, we have

1/
_ ;_aijé, < gi(p)(;;? Ve = g(p)(c — &)1 < g(p) [1 — I q=
J*i iFi

i)

If ie N — R, we have
- .;a,-jéj < g(1). max ¢;.
JFi

Consider now &; for je N — R; since u + ¢ < p(a;/g(1)), we have

ajj

&=(n+e U

so that max &, = u. Hence

+ ii
-2 a;;€; < gi(l) n= gi(l) (v 8)~ Tl _ K a;&; < a;é;.
J¥Fi a;; u + ¢ H + &

The proof is complete.

(6,4) Let A = (aij) € Z. Suppose that, in each row, at least one off-diagonal
element is different from zero. Suppose that p > 1 and that k; are positive numbers
such that a;; > kg (p) for each ieN. Let W be the set of those j for which g;(1)/g,(p) >
> kj. If W= 0 then Ae K. Let W # 0 and put m = max 1/[(1 + k%)'/?] for je W.
Let M, be the set of those j for which

q .> q
1 <maj where ai=<&1)> and q=—p—.

L+ kK 94p) p—1
Let
1 0;
o= + m? — < 1.
i§lo 1+ K ESNZMO k1
Then A € K.

Proof. If W =0, then a;; > g (1) for each ie N and 4 € K according to 2° of
(4,3). Now let W # 0 and let i € W. We have then

. q q
< mt < oL gD _mt
1+ ki kigdp)) ki

It follows that W = M. Put & = 1/(1 + k%)@ for ie M, and &; = m(a}/7/k;) for
ieN — M,. The vector x with coordinates ¢; is positive. Let us show that Ax > 0.

1/q
ap) (1 - — =
1+ k!

k,
g4p) s K g9{p) ki&i < ait;

i

If ie M, we have

ol &5 0z 5 007 - )

1+ ke

lIA
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If ie N — My, we have i e N — Wso that g(1)/g,(p) < k;. Further,
> a;;¢; < gi(l) .max ¢, .
Jj¥i
Let us show now that max £, = m. Since W =« M,, we have m = max &, for re W.
If re N — M,, we have re N — W so that g,(1)/g,(p) < k, and
¢ = mg_,(l) <m.
k. g{p)
If re My, — W, we have g,(1)/g,(p) < k, and
= ._._.1______ < —I’E a.:/q <m.
(1 + k97 &,

This proves the relation m = max &,. We see thus that, for ie N — M,,

g;,‘,.aijéj < gi(l) m = M‘“ . kigi(p) -m = éikigi(p) <a;é;.

gi(P) k;

r

The proof is complete. _
The following theorem has a close connection with a result obtained by K. FAN
and A. J. HorrMaN ([3], Th. 1.5).

(6,5) Suppose that, in the notation of the preceding theorem, there exists a posi-
tive a such that a;; > ag(p) for each i and Y o; £ o%(1 + of). Then A € K.
ieN

Proof. We shall use the preceding result; put k; = «. The set Wis the set of those j
for which ¢; > of. If W is empty, the proof is complete. If W % 0, we have m =
= 1/[(1 + a9)'4] and M, is the set of those i for which

1 m? 1 o

i =

14+ af od 1+ af o?

and is thus equal to W. Now

, ..
+ mi — =
f§fo 1+ k? ieNZMo k?
= ! ! 9i < Lo <1.

iwl4+o0f 14+ o%ieNn-woa? ienl+ala?
Thus the theorem (6,4) is applicable and 4 € K.
(6,6) Notation. Let 4 = (a;;) be a matrix. We shall denote by P(4) the matrix

|a11l, —IGIZL —Ials
—|1121|’ |‘122|, "|‘123|,
"'lasxl, —laszl, lassl,

3 see

so that P(4) e Z.
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(6,7) Let A =(ay)eK, B=(by)eK and let 0 <o < 1. If C is the matrix
with ¢y = |ay|* |ba|' ™% then P(C)e K. If A and B belong to K,, then P(C)e K,.
Proof. Consider first the case A, Be K. According to 2° of (4,3), there exist

positive vectors x and y such that Ax > 0 and By > 0. We are going to show that
P(C) z > 0 where z is the vector with coordinates z; = x?y! ~* Indeed, we have

Z |a,.k| [D.-kll * “k |a,k| x)* ( |b,k| ' =

é Z Ialk| \k) (Z |blk| yk)1 * a,,x) (bu) )1 * = aiibl!i—azi M

This completes the proof of the first assertion. Suppose now that 4 and B belong
to K,. We are going to show that P(C) + ¢E belongs to K for each positive ¢. Clearly
there exist positive numbers s; and ¢; such that

i + &= (ay + 5) (b + 1) 7%
If S and T are diagonal matrices with s; and t; as diagonal elements, we have 4 +
+ SeK and B + TeK by (5,11) and 3° of (5,1). Hence P(C) + ¢E €K by the
first assertion of the present theorem. It follows that P(C) € K,
(6,8) Let A = (a;})eZ. Let 0 < a < 1. Suppose that a;; = P;Q; * where P; =
=Y |a;| and Q; =Y |a;)|. Then A€ K,. If a;; > P;Q; ™, then AeK.
iFi iFi

Proof. It is sufficient to consider the case 0 < a < 1. Let us denote by P the matrix
with the same off-diagonal elements as 4 and with P; instead of a;;. Clearly P € K,
by 3° of (5,1) and 2° of (4,3). Let Q be the analogous matrix with Q; instead of a;
so that Q € K,. According to the preceding theorem the matrix W with off-diagonal
elements a; and diagonal elements P?Q} ~* belongs to K. Since a;; = wy;, we have
A €K, by (5,11). If a;; > wy;, then A € K by 3° of (5,1) and (4,6).

(6,9) Let A= (a;)eZ, let P, = Z[a,l| Suppose that aya;; > P,P; for each
pair i, j, i + j. Then A€ K.

Proof. There exists an ¢ > 0 such that a;a;; > (P; + ¢) (P; + &) for each pair
i,j, 1 % j. Since the matrix P with the same off-diagonal elements as A and with P;
instead of a;; belongs to K,, P + ¢E € K and 4 e K according to (4,10).

(6,10) Let A = (a;;)e Z, P; = ;Ia,-j|, 0= ; |aji|- Let 0 < o < 1. Suppose that
jFi i¥i
aya;; > P{QI P50} "
for each pair i, j,i % j. Then A€ K.
Proof. There exists an ¢ > 0 such that
aya;; > (PiQ;i ™" + &) (P5Q; " + ¢)
for each pair i, j, i # j. Since the matrix R with the same off-diagonal elements as A4

and with P{Q} ~* instead of a;; belongs to K, according to (6,8). we have R + ¢E e K
and A € K by (4,10).
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(6,11) Let A = (ay)eK, let 0 < a < 1. Then the matrix B = (by) with b,; =
= a;, by, = — |a,~,(’“ ]ak,-I’_“for i + k, belongs.to K, and

det B(M) 2= det A(M) for each M c N = {1,..,n}.

Proof. Since 4 € K,, the transpose A7 € K, as well. From (6,7) it follows that

B e K,. The remaining inequality is an easy consequence of the following general
theorem.

(6,12) Let ¢ be an operation in K, with the following properties:
1° if AeK,, then o(A) is a matrix of the same order and o(A) e Ky;
2° if Ae Ko and M <= N, then (A(M)) is less than or equal to the corresponding
submatrix of ¢(A);
3° if AeK, and D is a diagonal matrix with positive diagonal elements, then
(p(A) + D<= (4 + D).
Under these conditions, the operation ¢ transforms K into K and has the Sfurther
property
4° det ¢(A) = det A for each AeK,.
Proof. Let A € K so that A — g(A) E € K. It follows from our assumption that
@(A) — q(A)E 2 o(A — q(A) E) e K,
so that ¢(4) — g(A) E € K, by (5,11). It follows from (5,1) that
o(4) = (9(4) — g(4) E) + g(4) EeK.
The inequality for determinants will be proved by induction with respect to the

order n of the matrix. For n = 1, the assertion is obvious since for @ > 0 and any
¢ > 0, we have

o(a) = ¢(ea + (1 — &) a) = p(ea) + (1 — &)a = (1-¢a.

Let n > 1 and suppose the theorem proved for all matrices of order smaller than n.
Let A € K, be given and put B = ¢(A). If 4 is singular, we have det B = 0 = det 4
and the proof is complete. We may limit ourselves accordingly to the case 4 e K.
Put 2 = g(A) so that A > 0. We have

A — AE e K,, det B = det (AE + (B — AE)) =

= A"+ by A"+ ...+ b,_ A + det (B — 1E).
According to our assumption, we have @(A — JE) + JE < ¢(A) = B whence
B~ JE = ¢(A — JE) e K,

It follows that B — AE € K, so that det (B — AE) = 0. Similarly, det 4 = A" +
+ a;A""' + ... + a,_ A Here b, and a, are sums of all principal minors of order i
of the matrices B — AE and A — AE respectively. Let M be a proper nonvoid subset
of N. Then, according to conditions 2° and 3°, we have

B(M) — JE(M) 2 ¢(A(M)) — AE(M) = ¢(A(M) — AE(M)) e Ko
since g(A(M)) 2 g(A) = A by (4,8).
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From 2° of (4,6) and by induction hypothesis it follows that
det (B(M) — 2E(M)) 2 det ¢(A(M) — AE(M)) = det (A(M) — AE(M)).

Thus b; = a; for each i and the proof is complete.

7. INEQUALITIES FOR MATRICES AND THEIR DETERMINANTS

The inequalities presented below contain as special cases some known properties
of minors.

(7,1) Suppose that the matrices U, V, W fulfil the inequalities U £ V < W and
let V12 0. Then UV W< U — V+ W; if UeK and We Z then both matrices
UV~ 'Wand U — V + W belong to K.

Proof. Obviously (V' — U) V™YW — V) 2 0, all three matrices in the product
being non-negative. A simple computation gives the above inequality. Further,
if Ue Kand WeZthen U — V+ W= (U — V) + Wis a sum of a matrix We Z
and a non-positive matrix U — V. Thus, U — V + We Z and consequently UV " 1We
€Z But (UV™'W)™' = (W 'V)U™"; since U™' 20 and W'V = 0 by (4,6),
we have UV ™' We K according to 11° of (4,3). From (4,6) it follows that U — V +
+ We K. The proof is complete.

(7,2) Notation. If A = (a;;), B = (b,;) are matrices, let us denote by 4 v B the
matrix (max (a;;, b;;)), by A A B the matrix (min (a;;, b;;)).

(7,3) If A, B, C are matrices such that A < Band B™* = 0, then AB"'(B v C) <
<Av C.

Proof. Since B < B v C, it follows from (7,1) that

AB™'(Bv C)< A— B+ (Bv C).
But 4 — B + (B v C) £ A v C which completes the proof.

(7,4) Let A, B, C be matrices such that A< B, A~' >0, Bv CeZ. Then
both matrices AB™" and (A v C)(B v C)™" belong to K and AB™' < (A v C).
.(B v C)"'. Finally,

det 4 _ det(4 v C)
det B~ det(Bv C)

Proof. From (4,6) it follows that B~* > 0 (since 4, B, Ce Z), AB™' e K as well
as (A v C)(B v C)"*eK. The inequality in the preceding theorem multiplied
by (B v C)™! = 0 gives AB™* < (4 v C)(B v C)~'. From 2° of (4,6) follows the
remaining inequality for the determinants.

(7,5) Let AcK, Be Z be matrices A < B. Let 0 + M, ¢ M, = N. Then
det A(M,) < det A(M,)
det B(M,) ~ det B(M,)
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Proof. We may suppose that M, = N. Then the inequality considered is a con-
sequence of the preceding one if we put C = (c,-j), c;j=a;;fori,je M, ori=jand
¢ = 0 for the remaining pairs of indices k, 1.

This section will be conclued by a modification of (7,4) and a consequence of (7,5).

(7,6) If matrices A, B € Z fulfil the condition A A B e K, then

det A det B = det (4 v B)det(4 A B).

Proof. This follows directly from (7,4).

(7,7) Let A, B be matrices of order n, M; = {1,2,...,i}. Let A, Be K, A < B.
Then

det 4 < det A(M,_,) < . < det A(M,) <1
det B~ det B(M,_,)  det B(M,)

Proof. This is an easy consequence of (7,5).

It is easy to see that the inequalities in (7,1) may be generalized for the case of
2n + 1 matrices.
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Pe3rome

O MATPUIAX C HEIIOJIOXUTEJIbHBIMU HEIUATOHAJIbBHBIMU
SJIEMEHTAMM U MOJIOXUTEJIbHBIMU T'JIABHBIMU MMUHOPAMMU

MUPOCJIAB ®UIJIEP u BJJACTUMMI MNTAK (Miroslav Fiedler a Vlastimil Ptak), Ilpara

PaGoTa nocesiuieHa cuCTEMaTHYECKOMY OINMCAHMIO CBOWCTB TeX MATpHL, BCE
HeJlMar OHaJIbHBIC 3JIEMEHTBI KOTOPBIX HETOJIOXHTENLHbI, MEXAY TEM KaK BCE IJIaB-
HpIC MUHODBI NOJIOXKHUTEIbHEL. PaboTa CIy)XUT OCHOBaHUMEM [Jisl M3YYEeHHH HEKOTO-
PbIX CNEKTPAJIbHBIX CBOWCTB MATPHIl; Pe3ybTATHl 3THX U3y4eHHH OymyT omyOnu-
KOBaHbl B JAJIbHEHIINX COOOLIEHHAX.
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