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Чехословацкий математический журнал, т. 14 (89) 1964, Прага 

RELATIONS BETWEEN THE DIAGONAL ELEMENTS OF TWO 
MUTUALLY INVERSE POSITIVE DEFINITE MATRICES 

MIROSLAV FIEDLER, Praha 
(Received January 23, 1962) 

1. Introduction. It is the purpose of this paper to solve the following p r o b l e m : 
To find necessary^) and sufficient conditions for In numbers а-ф a^, i = 1, . . . , n, 
to be diagonal elements of an n-rowed positive definite matrix A = (а^) and its 
inverse matrix A~^ = (a,-,). The complete solution is given in Theorems (3,2) and 
(3,3). Some applications are added which describe the geometric sense of the con
ditions. 

2. Notation and lemmas. We shall use the well known notions of the theory of 
matrices and linear algebra. If Л is a matrix with complex elements, we shall denote 
by A* the conjugate transpose of Л. If С = (с^), i,j = 1, . . . , n, is a square matrix 

n 

then tr С denotes the trace ^ с̂ ^ of С If D is a diagonal matrix with diagonal elements 
1 = 1 

di, ...,d„, WQ shall write simply 

D = diag{di, ...,(i„} . 

Moreover, we shall use the following l emmas : 

(2,1) Let n ^ m ^ 1 be integers, d^, d2,..., J„ positive numbers. Then, 

(1) ( I ^ O ^ f s } ) - « è C Z ^ O M E j ) -
i = i \i = i di/ i = i \i = i dj 

with equality if and only if 

m / m I \ -

dm+l = dm + 2 = ... = 4 = (Z^O^l Z Tl 
i=l \ i=l dJ 

m 

I N - I 

' ) A necessary condition is proved in [2]. 
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Proof. The case n = m + I follows directly: 

m m 

i=l 

ŒdO'(Y^^]-m = Z r f . s } + 2 E^.Z J +1 

- (m + 1) ^ 
m m 1 m 1 1 m 

i = l i = l Ui i=l di ^m+1 ^'^^ 

m+ 1 / ' " + 1 1 \ i 

(m+l) = (Z^O* Z T - ( m + 1 ) . 
i = X \ i = i di/ 

From this, (1) follows immediately. Suppose that in (1) equality is reached. Then 

m / '" 1 \ ~^ 

^™+i=(ZrfOMZT) 

as well as 

since the relation is symmetric with respect to ^„,+1, tl^+2,.. . , d„. It can be easily 
seen that we really obtain equality in this last case. 

(2,2). Let ai, ^2, Ö3 be real numbers such that 0 < a^ ^ ^2 = ^з-
Then, 

(2) + < 1 
ai + «3 a^ + Ö3 

wïï/ï equality if and only if a2 = a^ or «2 = ^з-

Proof. From (дз — a2)(<^2 — ^1) ^ 0 we obtain equivalent inequalities 

02(^1 + ^3) ^ C1I + «1^3 . 

« 1 ^ 3 « 2 

+ < 1 
^ 2 ( ^ 1 + « 3 ) « 2 ( 0 1 + <^з) 

Thus, (2) is valid, with equality as asserted. 

(2,3). Let di, ^2? ---idn^n ^ 2, b^ rea/ numbers for which 0 < of̂  ^ J2 = • • • = n̂? 
n 

and Ci, C2,..., c„ non-negative numbers such that ^ ĉ  = 1. Тйгп, 

(3) ddd'it УУ ̂  (̂1 + d„f(j- + ly + „ - 2 ^ 
i=i V'=i <̂ ,7 V^i dj 

" / " r \ * 
è2(Zqd,)M Z ~ ) +П-2. 

»=i \ t = i flj/ 
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In the left inequality, equality is attained if and only 1/^2 = ^3 = ••• = ^n-i = 
= (did„)^. In the right inequality,^) equality is valid if Ci = 0 whenever di < 
< di < dn and Yj^k — ^ where M = {к; dj^ = d^}. 

кем 
Proof. The left inequality is an immediate consequence of (2,1); thus, equality 

holds if and only if 

J2 = . . . = ^„-1 = {di + d„f ( v + i ^ ' = {did„f . 
\äi dj 

To prove the second inequality in (3), notice first that according to (2,2) and 
0 < d^ S di й d„ 

1_ 
d; d: ^ ^ 

(4) -— + й 1 
1̂ + ^̂  1 + 1 

di d„ 
n 

holds with equality if and only if di = d^ or di = d„. Thus, if ĉ  ^ 0, ^ ĉ  = 1, then 

и " С -

di + d„ 1 1 
di d^ 

i.e. 
JL Cr 

^ '''^' ̂  i 1 
i = l i = l " i ^ ^ ^ - . 

d^ + d„ I 1 4 
— + — 
J i dn 

From this, we obtain easily the second inequality in (3) with equality as asserted. 
We shall say further that a matrix Ä is diagonally congruent to a matrix В if 

Ä = DBD* 

for a diagonal regular matrix D, It is obvious that this relation of diagonal congruence 
is an equivalence relation. 

(2,4). If A ~ (aij) is (Hermitian) positive definite, then every diagonally con
gruent matrix to A has this property as well. Morevoer, there exists a matrix 
С = (Cij) which is diagonally congruent to A and such.that 

(5) с a = {aaaaf = уц 

where уц are diagonal elements of C^ = (jij). 

^) This is essentially the Kantorovich inequahty. Sse e. g. [3]. 
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Proof. The first part being obvious, let us choose D as a diagonal matrix with 
diagonal elements а^Ла^ where A~^ = (а,^). It is then easy to see that С = DAD* 
satisfies (5) as asserted. 

We shall conclude this section by the following obvious l emma: 

(2,5). Let J be a square matrix whose all elements are equal to 1, and let P be 
a square matrix of the same order. Then, 

JPJ = pJ 

where the number p is the sum of all elements in P. 

3. Results. In this section, we shall prove the main three theorems. 

(3,1). Theorem. Let A = (a^), i,j=l,..,,n,bea (Hermitian) positive definite 
matrix, A~^ = i^ij)- ^^t À^ be the least, À„ the greatest proper value of A, q = 
= ÀjÀi. Then, 

(6) (tr A tr A'^f '^ q^ + q~^ + n - 2 ^ 2 max ^'^(0^^/^) + n - 2 . 
i=l,...,n 

In the first inequality, equality is attained if and only if all remaining pro
per values of A are equal to {^i^„)^l in the second, we obtain equality if and only 
if n = 1 or if n > 1 and there exist proper vectors v, w corresponding to Xi, Я„ 
resp. such that their coordinates Vj, Wj fulfil the conditions % = Wj^ for к = 1, ..., 
n, к Ф i. Vi = ~ Wf. 

Proof. The case n = 1 being trivial, assume that n > 1. Let A = ULU"^ where 
L = diag {1^, ..., A„} (Я ,̂ ..., Я„ are positive proper values) and U = (w^) is unitary. 
Then, 

tr A = t^i^ trA-'=tK\ 
n n 

k=l k=l 
n 

Since X! I"ifc|̂  == Ь we obtain (6) immediately from (3) in (2,3), À^ = min Xj, 
k = l j = l,...,n 

i„ = max Àj, q = XJXi. By the same theorem, equality in the left inequality is 

attained if and only if Я̂  = (Ail„)^ for j = 2 , . . . , n — 1. Assume now that 

Xj = Я2 = . . . = Afc < H+i ^ ••• ^ Я̂  < Ai+i = .. . = /„ 

and that equality is valid in the second inequality. According to (2,3), Uij = 0 for 
к n 

J = /c + 1, ..., /, Y, hfpP = Z l^iql^" ~ i- There exist unitary matrices Vi, V2 
p = l q=l+l 

(with к rows and n — / rows resp.) such that 
( w a , . . . , w / . ) n = ( 2 - % 0 , . . . , 0 ) , 

(«,,,д,...,1/,,„)У2 = ( 0 , 0 , . . . , - 2 - ^ ) . 
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Then, A = ULU* = UVLV*U* = WLW* where 

(Vu 0, 0 \ 
F = 0, E, 0 (E is an (/ — /c)-rowed identity matrix) 

\0, 0, FJ 

and PF= L/Fis unitary. 
If PF= {wij), then Wji = 2"^, Wj.„ = —2~^; hence, 

П n n 

fc=l fc=l fc=l 

= (1 - K|^)4i - КП* = i 
so that W;̂ i = (7W;t„, к = I, ...,n, к Ф i. But (т = 1 since | = Z ^лх^ли — 

fc=i 

= (J Z |>̂ Ап|̂  = |(7. Consequently, the first column vector У and the last column vector w 
k = l 

of PF which are proper vectors corresponding to Д ,̂ Я„ resp. have the property of the 
theorem. It is easy to see that the converse part is also valid. The proof is complete. 

(3,2). Theorem. Let A = (ÖJ^), i,j = 1, ..., n, be a Hermitian positive definite 
matrix, A"^ = (ocij). Then, 

(7) «и > 0 , Œii > О , 

(8) «п«» ^ 1 . 

(9) V(«na,,) - l u t Ui^JJ^Jj) - 1] 

/ o r i = 1 , . . . , П. 
Conversely, let ац, осц (i = 1, . . . , n) be In real numbers which satisfy (7), (8) and 

(9) for i = 1 , . . . , n. Then, there exists a positive definite (even real) matrix A = 
= (flfjt) ^^<^h that its diagonal elements coincide with the given numbers ац and 
the diagonal elements of its inverse matrix with осц. 

Remark . In (8), equality holds for a fixed i if and only if a^^ = 0 for /c 7̂  i, 
i == I,..., n. The case of equality in (9) will be completely solved in (3,3). 

Proof. Since (7) as well as (8) written in the form а^Ац ^ det A {A^ is the comple
mentary principal minor of a^ in A) are well known, we shall prove (9) only. Thus, 
let С = (Cfy) be the matrix from (5) in (2,4). Then, 

Z V(«i^A.) = tr С = tr C-' = (tr C t r C-'f ^ 

^ 2 max ^/(сцуц) + и - 2 = 2 max ^JidifLi) + n - 2 
i = l , . . . , n i = l , . . . , M 
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according to (3,1). From this, (9) follows immediately. To prove the converse part^ 
notice that the statement does not depend on the choice of a matrix from the class 
of diagonally congruent matrices, i.e. according to (2, 4) it is sufficient to prove: 

Let Ci, . . . , c„ be non-negative numbers such that 

(10) 
w - 1 

Y,Ci^c^= max с J 
i = l i = l , . . . , n 

Then, there exists a positive definite matrix A = (ац), i,j=l,...,n such that its 
diagonal elements ац and the diagonal elements of its inverse matrix ац fulfil the 
relations 

^/(^ii^ii) - ^ = Ci (i = 1 , . . . , w) . 

This is obvions for n == 1. If n > 1, let us denote by Qi the numbers 

Qi = (^i(Ci + ^') ( г = 1 , . . . , Ю 

so that ^„ = max QJ, 

Let us distinguish two cases: 

1° If Z ^ i = ^;i. put 
« = 1 

1, 0, ..., 0, y ^ i 
0, 1, ..., 0, v^2 

0, 0, ..., 1, V^„-i 

Obviously, det Л = 1 > 0 and A is positive definite. But diagonal elements ocj^ 
of A~^ are 

a» = I + Qi, i = 1 , . . . , ^ - 1 ' 

A = 

Consequently, ajjOCjj = I + Oj = (I + CjY for j = 1 , ••., n 

n-l 

2° Let now YjQi^ Qn so that g„ > 0. Denote by (Pi(x), (p2(x) the real functions 

defined for x ^ — ̂ „""̂  

(Pi(x) = „ - 2 - X (1 + Qi^f + (y + ^«^)^ ' 
fe=i 

И - 1 

«jftaW = « - 2 - Х ( 1 + ßix)^ - (1 +Qnxf , 
k=l 
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and put further 

^0 = - n̂ ^ e = sgn (̂ „ - X Qi) • 
i=l 

n- 1 

Since ^i(O) = 0, cpl(O) = \{Q^ - ^ Q^, 
И - 1 

^i(l) = - ( Z c, - О ^ 0 , (pi(xo) = cp^{x^) , (P2(0) = - 2 < 0 , 

the following assertion is valid: 
If 8 = 1, then (pi{x) has a root in (0, 1>. If e = - 1 and cpiix^) ̂  0, then (р2{^) 

has a root in <Xo, 0). If 8 = - 1 and ^i(xo) < 0, then (pi{x) has a root in <Xo, 0). 
Let us denote by ^ such a root (in each case), and by a, o\ d^, ...,d„ the real 

numbers 

<ii) 

<12) 

where 

a = l + V ( l - 0 , C7' = 1 - У ( 1 - ^ ) , 

rfi = 

rf„ = U^(i+e„if+ 1) 

, i = 1, ...,n - 1 , 

f / = l i f e = l , fj=— sgn (Pi(̂ :o) if e = — 1 

According to the definition of ^ 

l+0i<^>O 0 = 1 , . . . , « - ! ) , l+e„<^èO 

and it follows easily that all dj exists since 

(13) 8,̂  > 0 . 

Moreover, 

(14) 

Now, we shall show that the matrix 

A = V+ GDJD 

\d]-edl= - 2 Г ' . 

where 
F=diag{ l , 1,..., 1, -^] 

D = diag {til,..., d^] and J = (ĵ fe), Jife = 1 {i, k = 1, ..., n) fulfils our conditions. 
Really, A is positive definite since 

det Л = - 8 + a{dl - e^Yd-) = ^ГЧ^ + 7 (1 "" Of > 0 
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according to (12) and (13) while the principal submatrix consisting of the first n — I 
rows and columns of Л is obviously positive definite itself. Further, 

flfi = 1 + cjJf (i = 1, ... , w - 1), a„„=-s + (jdl. 

But, A"" = V+ a'VDJDV since ( F + oDJD){V+ ù'VDJDV) = £ + [(7 + er' -Ь 

+ <^^\ Z ^f - ß^«)] ̂ ^ ^ ^ = ^ according to (2,5) and (14). Thus, 

â i = 1 + (T'J? (i = 1, ..., n - 1) , a„„ = - e + (J ' J^ . 

Hence 

üifiu =\Л-{о + a')d] + aa'dt = 1 + ^̂  = (1 + c.f (г = 1, ..., w - 1) ,. 

^nn^nn = I - £{(т + (T') dl + oa'dt = 1 + ^„ = (1 + c^y . 

The proof is complete since both matrices A are even real. 

(3,3). Theorem. Let A = (Ö£J), / , J = 1, ..., ?i, be a (Hermitian) positive definite 
matrix, A~^ = (a^j). Т/гвп, the following three properties of A are equivalent with 
each other: 

n - l 

1° ч/(«пА„) - 1 = E Ui^^ii^ii) - 1) ^ 

/ , j = 1, ..., n - 1 , 2° 

; we// as 

i = l 

^ij ^ ^ij 

\l(^ii\l^n ^^ii\/^j/ 

^in _ __ O^in 
/ / 1 1 ' 1, . . . , /1 1 , 

3° A is diagonally congruent to a matrix of the form 

, fE + ia-\)bb*, b^(a'-l) 

where E is the (n — l)-rowed identity matrix, b is an (n — lyrowed unit vector 
and a ^ \. 

R e m a r k . The matrix (15) has proper values a ± Jia^ — 1), 1, . . . , 1 and its 
inverse is 

/E + (a-l)bb*, -b^ia'-l)\ 
\ - b * ^ a ' - l , a J-

Proof. The assertion being trivially fulfilled if n = 1, assume that n > 1. We shall 
show that Г -> 2° -> 3° -> Г. In the first step Г ~> 2°, we shall use another method 
(though it is not necessary to prove it in this manner). 
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Let Г be fulfilled and denote by У = (yij), ij = 1, ..., « the matrix with elements 

1 ' 

/,7 = 1, . . . , П, where ê  = 1 for / = 1, . . . , n — 1, г„ = —1. According to (3,2), the 
n 

function Ф{)С) = YJ ^i yi^ii^ii) defined on the open set SD?̂  of all ?i-rowed positive 
1 = 1 

definite matrices X = (хц) with X~^ = (^ij) attains its minimum n — 2 for the 
m^atrix A. We shall prove 2° by showing that if У =7̂  0 then there exists a matrix 
С eWin for which Ф(с) < Ф(А). To prove this, put 

С = (E + sY) A(E + еУ*) 

where £ is a sufficiently small positive number. For a moment, we shall use the 
following notation: 

If (pi(e), (Pii^) ^^^ functions or matrix functions of г, we shall denote by (??i(e) ^ 
^ <P2(fi) the fact that (Pi{e) — (pzi^) is O(fî ) for e -^ 0. 

Thus, 

С ^ A + 8{YA + ЛУ*) , C"^ ^ A-^ - г(У*Л-^ + A'^Y) . 

I f C = ( c , ^ C - ^ = ( 7 , , ) , t h e n 

n n n n 

HC) = Z £i V(cnr,-,) « Z £,(aü + 28 Re X J'ya,-,)* («н - 2e Re ̂  «иУл^ « 
1=1 i=l j=l J=l 

^is,^{a,,a,,)(l+sRct ^ Л - £ Re t ^ ^ U 

^ Ф(А) + stet h^tyij^jil(^ - ^еДз;,,а,, Д ^ ' 

= Ф(А) + s Re^ t ^ Гз;,,£,а,, J j ^ ^ " ) - j;,,£,a,, l(^^ 

= Ф(Л) - e t 

^77/J 

ij=l '^aay/üjj ^ ^cCii 
< Ф(А) . 

То prove 2° -> 3°, let С = (c^j) be the matrix in (2,4) satisfying (5). According 
to 2°, С is of the partitioned form 

C = (^'^') while C-'=(^'' ~' 

( Q is an (n — l)-rowed square matrix, с is a column {n — l)-rowed vector). 

47 



Consequently, 

(17) Cl - ce* = £ i {E^ is identity matrix), 

(18) - c * c + у2 = 1 , 

(19) Cic = ус . 

From (18) it follows that у ^ 1. If у == 1, then с = 0, C^ = E^ so that Q == £ i 
since Ci is positive definite. Thus, A satisfies 3°. 

Let thus у > 1 so that с Ф 0. From (17) it follows easily that, since Cf = E^ + cc* 
and Ci is positive definite, 

Q = £ i + - ^ [(1 + c'^cf - 1] cc* . 

Consequently, if we put a = y, b = c(y^ — 1)"^, we obtain С in the form (16). 

The implication 3° -> 1° is a very simple consequence of (15), (16) and the fact 
that both properties are invariant under diagonal congruency. The proof is complete. 

4. Applications. We shall show first that the conditions (7) —(9) involve necessary 
and sufficient conditions for the lengths of 2n vectors forming a biorthogonal basis 
in a (real or complex) n-dim.ensional unitary vector space X„. Here, we denote by 
(x, y) the scalar product of vectors x and у and by \x\ the length (x, x)^ of the vector x. 
Two bases a^, . . . , Ö „ and b^, . . . ,b„ are said to form a biorthogonal system^) if 
(aI, bj) = ôfj (ôij is the Kronecker symbol) for i, j = 1, ..., n or, equivalently, if the 
basis « 1 , . . . , a„ is an image of an orthonormal basis e^, ..., e„ by a regular linear 
mapping С while the basis b^,..., b„ is image of e^, ..., e„ by the inverse adjoint 
mapping C*"^: 

(20) a^ = Cci, bi = С*"^е^, i = 1 , . . . , n . 

It is well known that to any basis a^, ..., a„ in X„ there exists a (single) basis 
b i , . . . , b„ forming with the preceding basis a biorthogonal system. 

(4Д). Theorem. Let a^, ...,fl„, b^, . . . , b„ be a biorthogonal system in a unitary 
n-dimensional vector space X„. Then, the lengths â - = |а^|, ßj = |Ь^|, г, j = 1, . . . , п, 
/w/Д/ Й^ inequalities 

(21) a,i5, ^ 1 , (i = 1 , . . . ,п) , 

(22) а , ^ , - I g f ( а / , - 1 ) (i = l , . . . , n ) . 

^) See e.g. [1]. 
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Conversely, if a^, ..., a„, ß^, .... ßn are In non-negative numbers satisfying (21), 
(22), then there exists a biorthogonal system a^, ..., a„, bi, ..., b„ such that \а\ = a,-, 
\bj\ = ßp ij = l , . . . , n . 

Further, equality is attained in (21) if and only if ai and bi are linearly dependent. 
In (22), equality holds if and only if the angles of the vectors aj, aj, (j\ к - 1, ..., 
. . . , n, 7 Ф Ï Ф k) are equal to the corresponding angles between bp bp. while the 
anles between ai and ai^{k = I, .,., n, к ф i) are equal to the corresponding angles 
between —bi and bj^. 

Proof. Let Ci,..., е„Ы an orthonormal basis in X„ and С such a linear mapping 
that (20) holds. Then, 

a? = (Ce,, CCi) = (C^CCi, Ci) = (ACi, e^) 

where Л — С*С is a positive definite mapping in X„. Analogously, 

ß\ = (C*-^e„ C*-^e,) = (C-^C*-^^,, e^) = (Л'^е,, e^) . 

Thus, (21) and (22) are identical with conditions (8) and (9) for the corresponding 
matrix with elements a^ = (Aci, Cj). 

Conversely, if (21) and (22) hold, there exists a positive definite matrix (а,^) (which 
may be chosen real) such that relations a^ — a], a^ = ß'f (i = 1, ..., n) are satisfied 
where ац are diagonal elements of the inverse matrix (a,^) to (ац). Consequently, 
there exists a positive definite mapping A fulfilling aij = (Aci, Cj), oCfj = (Л~^е,, Cj). 
If we choose a mapping С such that C^C = A (and it is possible to choose С positive 
definite), then the vectors a^,..., a„, b^, ..., b„ from (20) form a biorthogonal system. 
Since then 

a. J = {Cei,Cej) = (a^^aj) ; 
and 

а,, = (С*-^ . , ,С*-^ . , ) = ( Ь , Ь , ) , 

it follows easily from (3,2) that in (21) equality holds if and only if (a,, aj) = 0 for 
j = 1, ..., nj Ф i, i.e. if Ö,; = Àbi (since (b,, aj) = 0 for j = 1, ..., n, j ^ /, as well). 
According to the equivalence of Г and 2° in (3,3), equality in (22) is attained if and 
only if 

(aj,, ai) __ (bfe, bi) 

k J laA \bA \bj 
for k,l=l,...,n,k^i^ /, 

while 

(cih aj) ^ __ (bn bj) for j = 1, . . . ,n , j Ф i. 

The proof is complete. 
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(4Д). Theorem. / / а^, . . . ,а„, Ь^, ..., Ь„ is а biorthogonal system in а unitary 
space, then the angles a>i, 0 ^ cô  < ^n, between the corresponding vectors ai and bf 
fulfil inequalities 

n 

(23) sec cOf - 1 ^ ^ (sec CDJ — 1) , / = 1, ..., n . 

Conversely, if a>i,...,w„ are zero or acute angles satisfying (23) {or the single 
inequality (23)/or that ifor which â  = max Œ},), then there exists a biorthogonal 

system «1, ..., a„, bi, . . . , ^„ such that Oj is the angle between aj and bj,j = 1, ..., n. 

Proof. Follows immediately from the preceding theorem since 

{aj, b,) 1 
c o s CO; = . . . . = г • 

In the next application, we shall use the notion of the spherical m-simplex. This 
will mean essentially a system of m + 1 linearly independent directions ô^,..., ö^+i 
in a Euclidean (m + l)-space E^^-^. We shall call altitude-angle of the spherical 
m-simplex corresponding to the vertex-direction ô^ the angle (acute or right) cpi 
between ô^ and the hyperplane in £^+i which contains all ôj for j ф i. It is easy to 
see that, if a^, ..., a^+j are any non-zero vectors such that Ö^ (i = 1, ..., m + 1) 
is of direction ôi and b^,..., b^ + ^ are vectors forming together with a^,..., a^+i 
a biorthogonal system in E^ + i, then coi = ^n — (pi is the angle between â  and b^ 
( i = l , . . . , m + 1). 

Conversely, if a^,..., a^ + i, b^, ..., b^ + j is a biorthogonal system in jE^+i and cô  
is the angle between ai and bi (Ï = 1, . . . , m + 1), then (Pi = ~n - œ^ is the altitude-
angle corresponding to the direction of a,, in the spherical m-simplex whose vertex-
directions are the directions of a^, ..., a^ + .̂ 

From this observation and (4,2) the following theorem follows immediately: 

(4,3) Theorem. Let cp^, ..., (p^+i be the altitude-angles of a spherical m-simplex. 
Then, 

m+ 1 

(24) cosec (Pi - I ^ J\ (cosec Ф,- - 1) , / = 1, . . . , m + 1 . 
j = i 

Conversely, if cp^, ..., cp,^^^ are acute or right angles satisfying (24) (or the single 
inequality (24) with such i that cp^ = min (p^), then there exists a spherical 

m-simplex whose altitude-angles are (pi (i = 1, . . . , m + 1). 

R e m a r k . It can be proved that, if equality in (24) is attained, the corresponding 
m-simplex is orthocentric (i.e., his "altitudes" have a common direction) and satisfies 
a further condition. 
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Р е з ю м е 

СООТНОШЕНИЯ МЕЖДУ ДИАГОНАЛЬНЫМИ ЭЛЕМЕНТАМИ 
ДВУХ ВЗАИМНО ОБРАТНЫХ ПОЛОЖИТЕЛЬНО 

ОПРЕДЕЛЕННЫХ МАТРИЦ 

МИРОСЛАВ ФИДЛЕР (Miroslav Fiedler), Прага 

Доказывается следующая теорема: Необходимым и достаточным условием 
для того, чтобы 2п действительных чисел а^, ..., а„„, а^, ..., а„„ образовали 
системы диагональных элементов полож:ительно определенной матрицы А = 
= (aif^) и диагональных элементов обратной к ней матрицы А~^ = (â t̂), является 
одновременное выполнение следующих неравенств для / = 1, ..., п: 

а̂ е > О, ац > О, an^ü ^ 1 . 

Далее характеризуются случаи равенства и дается геометрическое истолкова
ние этой теоремы как условия, налагаемого на длины векторов биортого
нальной системы, на углы соответствующЕХ векторов биортогональной систе
мы или на высоты сферического симплекса. 
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